Proceedings of the Korea Information Processing Society Conference
/
2011.04a
/
pp.879-882
/
2011
최근 변종 악성코드가 크게 증가하고 하나 이상의 악성코드로 이루어진 그룹 형태의 악성코드들이 빠르게 유포되고 있다. 이러한 그룹 형태의 악성코드와 변종 악성코드에 대한 효과적인 대응을 위해서는 악성코드 그룹 및 변종을 관리하고 안티바이러스 업체와 정보를 공유할 수 있는 시스템이 필요하다. 본 논문에서는 대용량 악성코드 분석 정보로부터 악성코드 그룹 및 변종 정보를 효율적으로 관리하고 공유하는 시스템을 제안하다. 악성코드 그룹 정보는 악성코드 행위를 기반으로 연계된 악성코드 정보들로 생성되고, 악성코드 변종 정보는 CFG 분석을 통한 악성코드간 유사도 정보로 생성된다. 본 논문에서 제안하는 시스템은 악성코드 그룹 및 변종 정보를 쉽게 검색하고 공유할 수 있기 때문에 다양한 악성코드 대응 시스템과 쉽게 연계될 수 있는 장점을 가지고 있다.
본 논문은 수년간 급격하게 증가되어 많은 피해를 초래하고 있는 악성코드를 탐지하기 위한 기법을 제안한다. 악성코드 제작자로부터 생산되고 인터넷에 유포되는 대부분의 악성코드는 처음 개발된 제로-데이 악성코드의 코드 일부를 그래도 재사용하는 경우가 많다. 이러한 특징에 의해 악성코드 변종들 사이에는 악의적 행위를 위해 사용되는 함수들 중 공통으로 포함되는 코드들이 존재하게 된다. 논문에 저자는 이점에 착안하여 코드 재사용 검사 여부를 통한 악성코드 변종 탐지 기법을 제안하고 있다. 그리고 변종 샘플을 이용한 변종 탐지의 가능성을 증명하는 실험과 실제 공통으로 존재하는 재사용 코드 일부(함수) 추출 정확성을 알아보는 실험을 수행하여 주장을 뒷받침한다.
기하급수적으로 증가하고 있는 변종 악성코드에 대응하기 위한 식별 연구가 다양화 되고 있다. 최근 연구에서는 기존 악성코드 분석 기술 (정적/동적)의 개별 사용 한계를 파악하고, 각 방식을 혼합한 하이브리드 분석으로 전환하는 추세이다. 나아가 변종 식별이 어려운 악성코드를 더욱 정확하게 식별하기 위해 기계 학습을 적용하기에 이르렀다. 이에 따라, 본 논문에서는 변종 악성코드 식별을 위해 각 연구에서 활용한 기계 학습 기술과 사용한 악성코드 특징을 중심으로 변종 악성코드 식별 연구를 분류 및 분석한다.
Malware authors spread malware variants in order to evade detection. It's hard to detect malware variants using static analysis. Therefore dynamic analysis based on API call information is necessary. In this paper, we proposed a malware family recommendation method to assist malware analysts in classifying malware variants. Our proposed method extract API call information of malware families by dynamic analysis. Then the multiple sequence alignment technique was applied to the extracted API call information. A signature of each family was extracted from the alignment results. By the similarity of the extracted signatures, our proposed method recommends three family candidates for unknown malware. We also measured the accuracy of our proposed method in an experiment using real malware samples.
The expansion of internet technology has made convenience. On the one hand various malicious code is produced. The number of malicious codes occurrence has dramadically increasing, and new or variant malicious code circulation very serious, So it is time to require analysis about malicious code. About malicious code require set criteria for judgment, malicious code taxonomy using Algorithm of weakness difficult to new or variant malicious code taxonomy but already discovered malicious code taxonomy is effective. Therefore this paper of object is various malicious code analysis besides new or variant malicious code type or form deduction using visualization of strong. Thus this paper proposes a malicious code analysis and grouping method using visualization.
While the development of the Internet has made information more accessible, this also has provided a variety of intrusion paths for malicious programs. Traditional Signature-based malware-detectors cannot identify new malware. Although Dynamic Analysis may analyze new malware that the Signature cannot do, it still is inefficient for detecting variants while most of the behaviors are similar. In this paper, we propose a detection method using behavioral similarity with existing malicious codes, assuming that they have parallel patterns. The proposed method is to extract the behavior targets common to variants and detect programs that have similar targets. Here, we verified behavioral similarities between variants through the conducted experiments with 1,000 malicious codes.
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.376-379
/
2017
전 세계적으로 악성코드는 하루 100만개 이상이 새롭게 발견되고 있으며, 악성코드 발생량은 해마다 증가하고 있는 추세이다. 공격자는 보안장비에서 악성코드가 탐지되는 것을 우회하기 위해 기존 악성코드를 변형한 변종 악성코드를 주로 이용한다. 변종 악성코드는 자동화된 제작도구나 기존 악성코드의 코드를 재사용하므로 비교적 손쉽게 생성될 수 있어 최근 악성코드 급증의 주요 원인으로 지목되고 있다. 본 논문에서는 대량으로 발생하는 악성코드의 효과적인 대응을 위한 행위기반 악성코드 프로파일링 시스템 프로토타입을 제안한다. 동일한 변종 악성코드들은 실제 행위가 유사한 특징을 고려하여 악성코드가 실행되는 과정에서 호출되는 API 시퀀스 정보를 이용하여 악성코드 간 유사도 분석을 수행하였다. 유사도 결과를 기반으로 대량의 악성코드를 자동으로 그룹분류 해주는 시스템 프로토타입을 구현하였다. 악성코드 그룹별로 멤버들 간의 유사도를 전수 비교하므로 그룹의 분류 정확도를 객관적으로 제시할 수 있다. 실제 유포된 악성코드를 대상으로 악성코드 그룹분류 기능과 정확도를 측정한 실험에서는 평균 92.76%의 분류 성능을 보였으며, 외부 전문가 의뢰에서도 84.13%로 비교적 높은 분류 정확도를 보였다.
Although the internet has gained many conveniences and benefits, it is causing economic and social damage to users due to intelligent malware. Most of the signature-based anti-virus programs are used to detect and defend this, but it is insufficient to prevent malware variants becoming more intelligent. Therefore, we proposes a model that detects and defends the intelligent malware that is pouring out in the paper. The proposed model learns by imaging the characteristics of malware based on deeplearning, and detects newly detected malware variants using the learned model. It was shown that the proposed model detects not only the existing malware but also most of the variants that transform the existing malware.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.808-810
/
2013
최근 인터넷 사용이 보편화됨과 더불어 정치적, 경제적인 목적으로 웹사이트와 이메일을 악용한 악성 코드가 급속히 유포되고 있다. 유포된 악성코드의 대부분은 기존 악성코드를 변형한 변종 악성코드이다. 이에 변종 악성코드를 탐지하기 위해 유사 악성코드를 분류하는 연구가 활발하다. 그러나 기존 연구에서는 정적 분석을 통해 얻어진 정보를 가지고 분류하기 때문에 실제 발생되는 행위에 대한 분석이 어려운 단점이 있다. 본 논문에서는 악성코드가 호출하는 API(Application Program Interface) 정보를 추출하고 유사도를 분석하여 악성코드를 분류하는 기법을 제안한다. 악성코드가 호출하는 API의 유사도를 분석하기 위해서 동적 API 후킹이 가능한 악성코드 API 분석 시스템을 개발하고 퍼지해시(Fuzzy Hash)인 ssdeep을 이용하여 비교 가능한 고유패턴을 생성하였다. 실제 변종 악성코드 샘플을 대상으로 한 실험을 수행하여 제안하는 악성코드 분류 기법의 유용성을 확인하였다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.21
no.2
/
pp.37-47
/
2011
In the recent years, malicious codes called malware are having shown significant increase due to the code obfuscation to evade detection mechanisms. When the code obfuscation technique is applied to malwares, they can change their instruction sequence and also even their signature. These malwares which have same functionality and different appearance are able to evade signature-based AV products. Thus, AV venders paid large amount of cost to analyze and classify malware for generating the new signature. In this paper, we propose a novel approach for detecting metamorphic malwares. The proposed mechanism first converts malware's API call sequences to call graph through dynamic analysis. After that, the callgraph is converted to semantic signature using 128 abstract nodes. Finally, we extract all subgraphs and analyze how similar two malware's behaviors are through subgraph similarity. To validate proposed mechanism, we use 273 real-world malwares include obfuscated malware and analyze 10,100 comparison results. In the evaluation, all metamorphic malwares are classified correctly, and similar module behaviors among different malwares are also discovered.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.