• Title/Summary/Keyword: 악성코드 변종

Search Result 80, Processing Time 0.03 seconds

A Development of Management System of Malware Group and Variant Information (악성코드 그룹 및 변종 관리 시스템 개발)

  • Kang, Hong-Koo;Ji, Seung-Goo;Jeong, Hyun-Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.879-882
    • /
    • 2011
  • 최근 변종 악성코드가 크게 증가하고 하나 이상의 악성코드로 이루어진 그룹 형태의 악성코드들이 빠르게 유포되고 있다. 이러한 그룹 형태의 악성코드와 변종 악성코드에 대한 효과적인 대응을 위해서는 악성코드 그룹 및 변종을 관리하고 안티바이러스 업체와 정보를 공유할 수 있는 시스템이 필요하다. 본 논문에서는 대용량 악성코드 분석 정보로부터 악성코드 그룹 및 변종 정보를 효율적으로 관리하고 공유하는 시스템을 제안하다. 악성코드 그룹 정보는 악성코드 행위를 기반으로 연계된 악성코드 정보들로 생성되고, 악성코드 변종 정보는 CFG 분석을 통한 악성코드간 유사도 정보로 생성된다. 본 논문에서 제안하는 시스템은 악성코드 그룹 및 변종 정보를 쉽게 검색하고 공유할 수 있기 때문에 다양한 악성코드 대응 시스템과 쉽게 연계될 수 있는 장점을 가지고 있다.

악성코드 변종 탐지를 위한 코드 재사용 분석 기법

  • Kim, TaeGuen;Im, Eul Gyu
    • Review of KIISC
    • /
    • v.24 no.1
    • /
    • pp.32-38
    • /
    • 2014
  • 본 논문은 수년간 급격하게 증가되어 많은 피해를 초래하고 있는 악성코드를 탐지하기 위한 기법을 제안한다. 악성코드 제작자로부터 생산되고 인터넷에 유포되는 대부분의 악성코드는 처음 개발된 제로-데이 악성코드의 코드 일부를 그래도 재사용하는 경우가 많다. 이러한 특징에 의해 악성코드 변종들 사이에는 악의적 행위를 위해 사용되는 함수들 중 공통으로 포함되는 코드들이 존재하게 된다. 논문에 저자는 이점에 착안하여 코드 재사용 검사 여부를 통한 악성코드 변종 탐지 기법을 제안하고 있다. 그리고 변종 샘플을 이용한 변종 탐지의 가능성을 증명하는 실험과 실제 공통으로 존재하는 재사용 코드 일부(함수) 추출 정확성을 알아보는 실험을 수행하여 주장을 뒷받침한다.

Analysis of Research Trend on Machine Learning Based Malware Mutant Identification (기계 학습을 활용한 변종 악성코드 식별 연구 동향 분석)

  • Yu, JungBeen;Shin, MinSik;Kwon, Taekyoung
    • Review of KIISC
    • /
    • v.27 no.3
    • /
    • pp.12-19
    • /
    • 2017
  • 기하급수적으로 증가하고 있는 변종 악성코드에 대응하기 위한 식별 연구가 다양화 되고 있다. 최근 연구에서는 기존 악성코드 분석 기술 (정적/동적)의 개별 사용 한계를 파악하고, 각 방식을 혼합한 하이브리드 분석으로 전환하는 추세이다. 나아가 변종 식별이 어려운 악성코드를 더욱 정확하게 식별하기 위해 기계 학습을 적용하기에 이르렀다. 이에 따라, 본 논문에서는 변종 악성코드 식별을 위해 각 연구에서 활용한 기계 학습 기술과 사용한 악성코드 특징을 중심으로 변종 악성코드 식별 연구를 분류 및 분석한다.

Malware Family Recommendation using Multiple Sequence Alignment (다중 서열 정렬 기법을 이용한 악성코드 패밀리 추천)

  • Cho, In Kyeom;Im, Eul Gyu
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.289-295
    • /
    • 2016
  • Malware authors spread malware variants in order to evade detection. It's hard to detect malware variants using static analysis. Therefore dynamic analysis based on API call information is necessary. In this paper, we proposed a malware family recommendation method to assist malware analysts in classifying malware variants. Our proposed method extract API call information of malware families by dynamic analysis. Then the multiple sequence alignment technique was applied to the extracted API call information. A signature of each family was extracted from the alignment results. By the similarity of the extracted signatures, our proposed method recommends three family candidates for unknown malware. We also measured the accuracy of our proposed method in an experiment using real malware samples.

A Study on Malicious Codes Grouping and Analysis Using Visualization (시각화 기법을 이용한 악성코드 분석 및 분류 연구)

  • Song, In-Soo;Lee, Dong-Hui;Kim, Kui-Nam
    • Convergence Security Journal
    • /
    • v.10 no.3
    • /
    • pp.51-60
    • /
    • 2010
  • The expansion of internet technology has made convenience. On the one hand various malicious code is produced. The number of malicious codes occurrence has dramadically increasing, and new or variant malicious code circulation very serious, So it is time to require analysis about malicious code. About malicious code require set criteria for judgment, malicious code taxonomy using Algorithm of weakness difficult to new or variant malicious code taxonomy but already discovered malicious code taxonomy is effective. Therefore this paper of object is various malicious code analysis besides new or variant malicious code type or form deduction using visualization of strong. Thus this paper proposes a malicious code analysis and grouping method using visualization.

A Malware Variants Detection Method based on Behavior Similarity (행위 유사도 기반 변종 악성코드 탐지 방법)

  • Joe, Woo-Jin;Kim, Hyong-Shik
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.25-32
    • /
    • 2019
  • While the development of the Internet has made information more accessible, this also has provided a variety of intrusion paths for malicious programs. Traditional Signature-based malware-detectors cannot identify new malware. Although Dynamic Analysis may analyze new malware that the Signature cannot do, it still is inefficient for detecting variants while most of the behaviors are similar. In this paper, we propose a detection method using behavioral similarity with existing malicious codes, assuming that they have parallel patterns. The proposed method is to extract the behavior targets common to variants and detect programs that have similar targets. Here, we verified behavioral similarities between variants through the conducted experiments with 1,000 malicious codes.

Behavior based Malware Profiling System Prototype (행위기반 악성코드 프로파일링 시스템 프로토타입)

  • Kang, Hong-Koo;Yoo, Dae-Hoon;Choi, Bo-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.376-379
    • /
    • 2017
  • 전 세계적으로 악성코드는 하루 100만개 이상이 새롭게 발견되고 있으며, 악성코드 발생량은 해마다 증가하고 있는 추세이다. 공격자는 보안장비에서 악성코드가 탐지되는 것을 우회하기 위해 기존 악성코드를 변형한 변종 악성코드를 주로 이용한다. 변종 악성코드는 자동화된 제작도구나 기존 악성코드의 코드를 재사용하므로 비교적 손쉽게 생성될 수 있어 최근 악성코드 급증의 주요 원인으로 지목되고 있다. 본 논문에서는 대량으로 발생하는 악성코드의 효과적인 대응을 위한 행위기반 악성코드 프로파일링 시스템 프로토타입을 제안한다. 동일한 변종 악성코드들은 실제 행위가 유사한 특징을 고려하여 악성코드가 실행되는 과정에서 호출되는 API 시퀀스 정보를 이용하여 악성코드 간 유사도 분석을 수행하였다. 유사도 결과를 기반으로 대량의 악성코드를 자동으로 그룹분류 해주는 시스템 프로토타입을 구현하였다. 악성코드 그룹별로 멤버들 간의 유사도를 전수 비교하므로 그룹의 분류 정확도를 객관적으로 제시할 수 있다. 실제 유포된 악성코드를 대상으로 악성코드 그룹분류 기능과 정확도를 측정한 실험에서는 평균 92.76%의 분류 성능을 보였으며, 외부 전문가 의뢰에서도 84.13%로 비교적 높은 분류 정확도를 보였다.

Detection Model based on Deeplearning through the Characteristics Image of Malware (악성코드의 특성 이미지화를 통한 딥러닝 기반의 탐지 모델)

  • Hwang, Yoon-Cheol;Mun, Hyung-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.137-142
    • /
    • 2021
  • Although the internet has gained many conveniences and benefits, it is causing economic and social damage to users due to intelligent malware. Most of the signature-based anti-virus programs are used to detect and defend this, but it is insufficient to prevent malware variants becoming more intelligent. Therefore, we proposes a model that detects and defends the intelligent malware that is pouring out in the paper. The proposed model learns by imaging the characteristics of malware based on deeplearning, and detects newly detected malware variants using the learned model. It was shown that the proposed model detects not only the existing malware but also most of the variants that transform the existing malware.

A Study on the Malware Classification Method using API Similarity Analysis (API 유사도 분석을 통한 악성코드 분류 기법 연구)

  • Kang, Hong-Koo;Cho, Hyei-Sun;Kim, Byung-Ik;Lee, Tae-Jin;Park, Hae-Ryong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.808-810
    • /
    • 2013
  • 최근 인터넷 사용이 보편화됨과 더불어 정치적, 경제적인 목적으로 웹사이트와 이메일을 악용한 악성 코드가 급속히 유포되고 있다. 유포된 악성코드의 대부분은 기존 악성코드를 변형한 변종 악성코드이다. 이에 변종 악성코드를 탐지하기 위해 유사 악성코드를 분류하는 연구가 활발하다. 그러나 기존 연구에서는 정적 분석을 통해 얻어진 정보를 가지고 분류하기 때문에 실제 발생되는 행위에 대한 분석이 어려운 단점이 있다. 본 논문에서는 악성코드가 호출하는 API(Application Program Interface) 정보를 추출하고 유사도를 분석하여 악성코드를 분류하는 기법을 제안한다. 악성코드가 호출하는 API의 유사도를 분석하기 위해서 동적 API 후킹이 가능한 악성코드 API 분석 시스템을 개발하고 퍼지해시(Fuzzy Hash)인 ssdeep을 이용하여 비교 가능한 고유패턴을 생성하였다. 실제 변종 악성코드 샘플을 대상으로 한 실험을 수행하여 제안하는 악성코드 분류 기법의 유용성을 확인하였다.

Metamorphic Malware Detection using Subgraph Matching (행위 그래프 기반의 변종 악성코드 탐지)

  • Kwon, Jong-Hoon;Lee, Je-Hyun;Jeong, Hyun-Cheol;Lee, Hee-Jo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.37-47
    • /
    • 2011
  • In the recent years, malicious codes called malware are having shown significant increase due to the code obfuscation to evade detection mechanisms. When the code obfuscation technique is applied to malwares, they can change their instruction sequence and also even their signature. These malwares which have same functionality and different appearance are able to evade signature-based AV products. Thus, AV venders paid large amount of cost to analyze and classify malware for generating the new signature. In this paper, we propose a novel approach for detecting metamorphic malwares. The proposed mechanism first converts malware's API call sequences to call graph through dynamic analysis. After that, the callgraph is converted to semantic signature using 128 abstract nodes. Finally, we extract all subgraphs and analyze how similar two malware's behaviors are through subgraph similarity. To validate proposed mechanism, we use 273 real-world malwares include obfuscated malware and analyze 10,100 comparison results. In the evaluation, all metamorphic malwares are classified correctly, and similar module behaviors among different malwares are also discovered.