• 제목/요약/키워드: 아파치 하이브

검색결과 2건 처리시간 0.014초

하둡 에코시스템을 활용한 로그 데이터의 이상 탐지 기법 (Anomaly Detection Technique of Log Data Using Hadoop Ecosystem)

  • 손시운;길명선;문양세
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권2호
    • /
    • pp.128-133
    • /
    • 2017
  • 최근 대용량 데이터 분석을 위해 다수의 서버를 사용하는 시스템이 증가하고 있다. 대표적인 빅데이터 기술인 하둡은 대용량 데이터를 다수의 서버로 구성된 분산 환경에 저장하여 처리한다. 이러한 분산 시스템에서는 각 서버의 시스템 자원 관리가 매우 중요하다. 본 논문은 다수의 서버에서 수집된 로그 데이터를 토대로 간단하면서 효율적인 이상 탐지 기법을 사용하여 로그 데이터의 변화가 급증하는 이상치를 탐지하고자 한다. 이를 위해, 각 서버로부터 로그 데이터를 수집하여 하둡 에코시스템에 저장할 수 있도록 Apache Hive의 저장 구조를 설계하고, 이동 평균 및 3-시그마를 사용한 세 가지 이상 탐지 기법을 설계한다. 마지막으로 실험을 통해 세 가지 기법이 모두 올바로 이상 구간을 탐지하며, 또한 가중치가 적용된 이상 탐지 기법이 중복을 제거한 더 정확한 탐지 기법임을 확인한다. 본 논문은 하둡 에코시스템을 사용하여 간단한 방법으로 로그 데이터의 이상을 탐지하는 우수한 결과라 사료된다.

이동 평균과 3-시그마를 이용한 하둡 로그 데이터의 이상 탐지 (Anomaly Detection of Hadoop Log Data Using Moving Average and 3-Sigma)

  • 손시운;길명선;문양세;원희선
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권6호
    • /
    • pp.283-288
    • /
    • 2016
  • 최근 빅데이터 처리를 위한 연구들이 활발히 진행 중이며, 관련된 다양한 제품들이 개발되고 있다. 이에 따라, 기존 환경에서는 처리가 어려웠던 대용량 로그 데이터의 저장 및 분석이 가능해졌다. 본 논문은 다수의 서버에서 빠르게 생성되는 대량의 로그 데이터를 Apache Hive에서 분석할 수 있는 데이터 저장 구조를 제안한다. 그리고 저장된 로그 데이터로부터 특정 서버의 이상 유무를 판단하기 위해, 이동 평균 및 3-시그마 기반의 이상 탐지 기술을 설계 및 구현한다. 또한, 실험을 통해 로그 데이터의 급격한 증가폭을 나타내는 구간을 이상으로 판단하여, 제안한 이상 탐지 기술의 유효성을 보인다. 이 같은 결과를 볼 때, 본 연구는 하둡 기반으로 로그 데이터를 분석하여 이상치를 바르게 탐지할 수 있는 우수한 결과라 사료된다.