• 제목/요약/키워드: 아크릴 공중합체

검색결과 74건 처리시간 0.019초

보호된 이소시아네이트기와 불소화 알킬기를 가지는 아크릴계 고분자의 합성과 특성 (Synthesis and Characterization of Polyacrylate Derivatives Baying Protected Isocyanate Groups and fluorinated Alkyl Groups)

  • 김우식;김민우;정은천;백창훈;박이순;강인규;박수영
    • 폴리머
    • /
    • 제27권4호
    • /
    • pp.364-369
    • /
    • 2003
  • 보호된 이소시아네이트기를 가지는 발수성 아크릴계 고분자를 합성하기 위해 개시제로 $\alpha$,$\alpha$'-아조비스이소부틸로니트릴을 사용하여 2-fluorohexylethyl acrylate (FA)와 2-(o-(1'-methylpropylidenamino)carboxyl amino)ethyl methacrylate(MEM)를 몰비를 변화시키면서 메틸 에틸 케톤 중에서 공중합하였다. 합성한 공중합체중의 MEM과 FA의 함량을 NMR로 분석하였다. 이 결과를 이용하여 Kelen-Tudos 플로트에 의해 MEM (1)과 FA (2)의 단량체 반응성비를 구하였다. 그 결과 r$_{1}$=1.59였고 r$_{2}$=0.50였다. 이들 고분자의 수평균분자량은 39400에서 72400사이에 있었고 다분산 지수는 대략 1.5정도였다. 그 고분자중의 보호된 이소시아네이트기는 15$0^{\circ}C$ 이상의 온도에서 이소시아네이트기로 재생되었다. FA를 65 ㏖% 함유하는 고분자의 물에 대한 접촉각은 95$^{\circ}$정도였다.

공단량체의 화학적 구조에 따른 아크릴 접착제의 접착특성 (The Effect of Chemical Properties of Comonomer on Adhesion Properties of Acrylic Pressure Sensitive Adhesives)

  • 최운진;김호겸;조광수;이동호;민경은
    • 폴리머
    • /
    • 제31권5호
    • /
    • pp.369-373
    • /
    • 2007
  • UV 조사에 의해 합성된 아크릴 공중합체를 주성분으로 하는 무용제형 접착제를 제조하고 이때 도입된 공단량체의 함량 및 곁사슬 길이에 따른 접착특성의 변화를 연구하였다. 접착제의 초기 접착력(adhesive force)은 상대적으로 짧은 곁사슬을 가진 공단량체의 함량에 비례하여 증가하였는데 이것은 긴 곁사슬을 가진 공단량체가 도입된 접착제에 비해 상대적으로 높은 표면에너지에 기인하는 것으로 판단된다. 박리강도 및 전단강도를 확인해본 결과, ethyl 및 n-butyl acrylate가 공단량체로 도입된 접착제는 공단량체의 함량이 증가할수록 이들 접착물성이 대체로 향상되는 반면 hexyl 및 isooctyl acrylate가 도입된 접착제는 공단량체의 함량과 접착물성간의 뚜렷한 상관관계가 관찰되지 않았다. 이것은 공단량체의 곁사슬의 길이가 증가할수록 유동성의 감소로 인해 손실탄성률의 저하를 야기시켜 박리 및 전단강도와 같은 외부 응력에 대한 저항력을 약화시키게 되는 것으로 판단된다.

4원 공중합체 박리형 아크릴 점착제의 특성에 관한 연구 (Studies on the Characteristic of Removal Type Pressure-Sensitive Acrylic Adhesives)

  • 서영옥;설수덕
    • 접착 및 계면
    • /
    • 제1권1호
    • /
    • pp.15-22
    • /
    • 2000
  • 4원 아크릴 점착제를 합성하기 위하여 butyl acrylate(이하 BA), 2-ethylhexylacrylate(이하 2-EHA), methylmethacrylate(이하 MMA), 2-hydroxyethylmethacrylate(이하 2-HEMA)를 사용하였다. 점착제 구조는 FT-IR, 분자량 분포는 GPC로 측정하고 점도, 고형분 그리고 점착력도 조사하였다. 단량체와 용제의 부피비가 1.3:1일 때 점착력이 $160g_f/25mm$이며 가장 범용성이 있었다. 열처리속도가 50 m/min이었을 때 가사시간이 30 s이었으며, 최소 경화시간은 30 s로 확인하였다. 내후성 시험에서 1000 h 경과 후에도 점착력이 $160{\sim}180g_f/25mm$로 거의 일정하게 유지되었고, 점착 잔유물은 없었다.

  • PDF

아세트화 아크릴 공중합체-올레인산 혼합 에멀젼계 방수제 제조연구 (The Study on Prepare Water Proof Agent by Acryl Copolymer and Oleic Acid Mixed Emulison)

  • 김영근;황용현
    • 한국응용과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.83-94
    • /
    • 1996
  • EMA-co-DAMA were synthesized from 2-diethylaminoethyl metacrylate and ethylhexyl metacrylate in acrylmonomer. To facilitate water emulsification, acrylic copolymer was cationized by acetic acid to produce acetated acrylic copolymer. The structures of the synthesized copolymer and acetated copolymers were confirmed by IR, NMR, and molecular weight was measure by GPC, and C.H.N elemental analysis. Acetated acrylic copolymers were perfectly emulsified in water and showed increased emulsion stability. Polymer dispersion for cement modifier[(PDCM-PED) water proof agent of cement for concrete in building construction] was prepared by blending of the guaternized acrylic copolymer syndisized above, sodium silicate, sodium gluconate and oleic acid emulsion. The result with prepared polymer dispersion of cement modifier was examined, and it was found that excellent waterprooffing effect ; Water permeability ratio is 0.50 under the water pressure of $100g/cm^2$ and 0.60 under $3kg/cm^2$, and water absorption ratio is $0.42{\sim}0.50$ and $1.0{\sim}1.02$ compressive strength ratio at mixed of water/PDCM-PED is 50 times.

아크릴 공중합체와 지방산 카르바미드의 블렌딩에 의한 내구유연발수제의 제조에 관한 연구;V. PET 직물에의 발수가공 (A Study on the Preparation of Durable Softening Water Repellent by Blending Acrylic Copolymer and Fatty Carbamide;Water Repelling Finish of PET Fabrics)

  • 임완빈;김성길;박홍수
    • 한국응용과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.137-144
    • /
    • 1996
  • Durable softening water repellents such as PODCW, PDDCW, and PEDCW were prepared by blending cationized polymers, fatty carbamide, waxes, and emulsifiers. The cationized polymers included poly (octadecyl methacrylate-co-2-diethylaminoethyl methacrylate) [PODC], poly (n-dodecyl methacrylate-co-2-diethylaminoethyl methacrylate) [PDDC]and poly (2-ethylhexyl methacrylate-co-2-diethylaminoethyl methacrylate) [PEDC]. After the PET fabrics were treated with these water repellents, water repellency, softness, and durability of the PET fabrics were examined by various methods : water repellency by the hydrostatic pressure and the contact angle methods, softness by crease recovery and tearing strength, and durability by washability, respectively. Rating of water repellency of PET fabrics treated with PODCW was $80^{+}$, but those treated with PDDCW and PEDCW were not high enough to be used in industry.

아크릴 공중합체와 지방산 카르바미드의 블렌딩에 의한 내구유연발수제의 제조에 관한 연구;IV. P/C 혼방직물에의 발수가공 (A Study on the Preparation of Durable Softening Water-repellent by Blending Acrylic Copolymer and Fatty Carbamide;IV. Water-repellent Finish of P/C Blended Fabrics)

  • 고재용;홍의석;박홍수
    • 한국응용과학기술학회지
    • /
    • 제13권2호
    • /
    • pp.39-46
    • /
    • 1996
  • Durable softening water-repellenting agent such as PODCW, PDDCW and PEDCW were prepared by blending cationized compound such as poly(octadecyl methacrylate-co-2-diethylaminoethyl methacrylate)[PODC], poly(2-dodecyl methacrylate-co-2-diethyl-aminoethyl methacrylate)[PDDC] and poly(2-ethylhexyl methacrylate-co-2-diethyl-aminoethyl methacrylate)[PEDC], and cationized compound of fatty carbamide, of which synthetic methods were reported in the previous paper, waxes, and emulsifiers. The results of physical tests of the P/C blended fabrics treated with PODCW, PDDCW and PEDCW with and without textile finishing resin, showed a remarkable improvement of the physical properties. The prepared water-repellenting agents, PODCW-6 and PDDCW-1, were treated on P/C blended fabrics with and without resin. For any cases, there are a little changes between initial water repellency and repellency after 3 times washing of the fabrics. Therefore, the water-repellenting agents proved to be a durable agents, and initial water $100^{+}$ and $90^{+}$ point, respectively.

폴리아크릴로니트릴 공중합체의 극세 섬유제조 및 그 물성 (A Study of Fine Fiber Formation and Physical Properties of Polyacrylonitrile Copolymer)

  • 이신희
    • 한국의류산업학회지
    • /
    • 제14권3호
    • /
    • pp.472-477
    • /
    • 2012
  • The conditions of wet spinning were considered in order to prepare the fine denier of acrylic fiber. Polyacrylonitrile copolymer was synthesized by the copolymerization of acrylonitrile (AN) and methyl acrylate (MA) initiated by an aqueous sulfite-chlorate redox system. Acrylic fiber was manufactured through wet-spinning in a dimethyl formamide (DMF) system. The conditions of wet-spinning were investigated by i-value, spinning speed, diameter of spinneret, draw ratio, water content of spinning dope and morphology of protofiber. The physical properties of fibers were investigated by Instron. In this experiment, the minimum i-value decreased with the decreasing spinneret diameter, an increased spinning speed, and an increased coagulation bath (CBC) concentration. The maximum draw ratio increased with an increased CBC. The optimum CBC and water content of the spinning dope were 60%-65% and 3.5%, respectively. The tenacity at the breaking point increased with a decreased fineness of fiber. The elongation at breaking point was almost the same value as a function of the fineness of fiber.

지방산 카르바미드/왁스/아크릴 공중합체의 블렌드에 의한 내구유연발수제의 제조에 관한 연구 (IV);P/C 혼방직물에의 발수처리 (A Study on the Preparation of Durable Softening Water Repellents by Blends of Fatty Carbamide/Wax/Acrylic Copolymer(IV);Water Repelling Treatment of P/C Blended Fabrics)

  • 박홍수;배장순
    • 한국응용과학기술학회지
    • /
    • 제12권2호
    • /
    • pp.51-58
    • /
    • 1995
  • To prepare a durable softening water repellent, quaternized octadecyl methacrylate-2-diethyl-aminoethyl methacrylate as a mother resin and quaternized 1, 3-dioctadecyl-2, 7-dioxy-6, 8-di(2-hydroxyethyl)-1, 3, 6, 8-tetraazacyclodecane which increase the softening effect and the hydrostatic pressure blended with waxes and their emulsifier in various proportions to give water repellent PADWC. As the results of the measurement of water repellency, washable, tear strength and crease recovery to polyestercotton(P/C) blended fabrics treated with PADWC only or addition of textile finishing resin, the physical properties were increased. There was no significant lowering effect in water repellency when PADWC was treated the antistatic agent by the one-bath method, and the effect of water repellency by the adding the catalyst was studied. PADWC was confirmed as durable water repellent with the results of making little difference of water repellency as ${\pm}5$ point after and before washing.

다이싱 테이프용 자외선 경화형 점착제의 접착 물성 (Adhesion Properties of UV-curable Pressure Sensitive Adhesives for Dicing Tape)

  • 도현성;김성은;김현중
    • 접착 및 계면
    • /
    • 제5권4호
    • /
    • pp.1-8
    • /
    • 2004
  • 다이싱 테이프에 사용되는 UV경화형 점착제를 아크릴 공중합체를 butyl acrylate, acrylic acid, methyl methacrylate를 용액 중합을 통해 중합한 뒤, trimethylolpropane triacrylate를 블렌딩하여 제조하였다. 제조된 점착제는 UV 조사량에 따라 접착력, 유리전이온도 ($T_g$)를 측정하였는데 UV 조사량이 증가할수록 접착력은 급격하게 감소하였고 $T_g$도 증가하였다. 웨이퍼 표면에 점착 샘플을 부착하여 UV 조사 후 박리하여 표면을 관찰한 결과 점착잔류물을 남기지 않았다.

  • PDF

활성화 폴리에틸렌/왁스/아크릴 공중합체의 블렌드에 의한 내구유연발수제의 제조에 관한 연구(I) (Preparation of Durable Softening Water Repellents by Blends of Activated Polyethylene/Wax/Acrylic Copolymer(I))

  • 신재현;김성계;박홍수
    • 한국응용과학기술학회지
    • /
    • 제13권1호
    • /
    • pp.41-46
    • /
    • 1996
  • Durable softening water repellents such as PODCWs were prepared by blending cationized compound of poly(octadecyl methacrylate-co-2-diethylaminoethyl methacrylate), of which synthetic methods were reported in the previous paper, activated polythylene, waxes, and emulsifiers. Water repellency of prepared PODCWs was measured by performing water repellent finish to various fabrics, PODCWs showed a good water repellency for P/C blended fabrics and their repelling tendency was in the order of P/C blended fabrics>cotton fabrics>nylon taffeta. The initial water repellencies of PODCW-1 and PODCW-2 were 100 and $100^{-}$ points, respectively, for P/C blended fabrics. And also, PODCW-1 and PODCW-2 were confirmed as durable water repellents with the results of making little difference of water repellency as ${\pm}5$ point after and before washing.