• Title/Summary/Keyword: 아레니우스 그래프

Search Result 2, Processing Time 0.015 seconds

Comparison of Arrhenius and VTF Description of Ion Transport Mechanism in the Electrolytes (전해질 이온이동 기작 기술을 위한 아레니우스 모델 및 VTF 모델 비교)

  • Kim, Hyoseop;Koo, Bonhyeop;Lee, Hochun
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.81-89
    • /
    • 2020
  • To understand the performance of the electrochemical device, the analysis of the mechanism of ionic conduction is important. However, due to the ionic interaction in the electrolyte and the complexity of the electrolyte structure, a clear analysis method of the ion conduction mechanism has not been proposed. Instead, a variety of mathematical models have been devised to explain the mechanism of ion conduction, and this review introduces the Arrhenius and Vogel-Tammann-Fulcher (VTF) model. In general, the above two mathematical models are used to describe the temperature dependence of the transport properties of electrolytes such as ionic conductivity, diffusion coefficient, and viscosity, and a suitable model can be determined through the linearity of the graph consisting of the logarithm of the moving property and the reciprocal of the temperature. Currently, many electrolyte studies are evaluating the suitability of the above two models for electrolytes by varying the composition and temperature range, and the ion conduction mechanism analysis and activation energy calculation are in progress. However, since there are no models that can accurately describe the transport properties of electrolytes, new models and improvement of existing models are needed.

A Study on the Lifetime Prediction of Rubber Mount for Refrigerator Component (냉장고 압축기용 고무마운트 수명예측에 관한 연구)

  • Woo Chang-Su;Park Hyun-Sung
    • Journal of Applied Reliability
    • /
    • v.6 no.2
    • /
    • pp.135-150
    • /
    • 2006
  • Rubber material properties and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. This paper discusses the failure mechanism and material tests were carried out to predict the useful lifetime of NBR and EPDM for compression motor, which is used in refrigerator component. The heat-aging process leads not only to mechanical properties change but also to chemical structure change so called degradation. In order to investigate the aging effects on the material properties, the accelerated test were carried out. The stress-strain curves were plotted from the results of the tensile test for virgin and heat-aged rubber specimens. The rubber specimens were heat-aged in an oven at the temperature ranging from $70^{\circ}C\;to\;100^{\circ}C$ for a period ranging from 1 to 180 days. Compression set results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the compression set test, several useful lifetime prediction equations for rubber material were proposed.

  • PDF