심층 신경망 기술은 실시간 예측 서비스를 위한 다양한 응용 분야에 적용되고 있다. 그뿐만 아니라 최근에는 민감한 개인 정보나 중요 정보들도 이러한 심층 신경망 기술을 통해 처리되면서 보안에 관한 관심이 높아지고 있다. 본 논문에서는 이러한 심층 신경망의 보안을 위해 하드웨어 기반의 안전한 수행환경에서 심층 신경망을 수행함으로써 연산 과정을 보호하는 연구들과 안전한 수행환경 내에서도 효율적인 심층 신경망 처리 기술들을 살펴볼 것이다. 그리고 이러한 연구 동향을 토대로 앞으로의 심층 신경망 연산 보호 기술의 연구 방향에 대해 논하도록 하겠다.
대역폭 확장 기술은 300 ~ 3,400 Hz 대역의 협대역 음성 신호를 50 ~ 7,000 Hz 대역의 광대역 음성신호로 확장하여 음질, 명료도, 그리고 자연성을 높이는 기술이다. 본 논문에서는 협대역 음성 정보를 이용하여 광대역 음성신호를 추정하는 인공 대역폭 확장 기술을 설계하여, 오푸스(Opus) 오디오 복호화기에 내장시킴으로써, 대역폭 확장 모듈에서의 LPC(Linear Prediction Coding) 분석 및 LSF(Line Spectral Frequencies) 해석과 관련된 계산량을 감소시켰고 알고리즘 지연도 줄였다. 이를 위해 현재 다양한 분야에 적용되고 있는 딥 러닝 기술 중 하나인 심층 신뢰 신경망(Deep Belief Network, DBN) 방식을 스펙트럼 포락선 확장에 도입하여 전통적인 코드북 매핑법보다 더 좋은 품질의 스펙트럼을 만들 수 있었다.
본 연구는 실내에서 화재 발생시 시각 장애인들을 지원하기 위한 영상 기반의 화재감지기를 제안한다. 건물 내에 화재가 발생하는 비상 상황 발생시 시각 장애인은 일반인보다 상황을 인지하는 것이 늦기 때문에 위험한 상황에 노출되기 쉽다. 기존의 연기 감지기와 같은 현재의 화재 감지 방법은 화재 발생시 발생하는 화학 센서 기반 기술을 사용함으로써 감지가 상대적으로 늦으며 화재가 확산된 후에 감지가 되는 등 낮은 신뢰성이 문제가 될 수 있다. 이를 보완하기 위해 영상 기반의 화재 감지 기술이 개발되었지만 낮은 정확도가 문제가 되어 실용화되지 못하였다. 최근 인공 지능을 위한 심층 학습 분야의 큰 발전으로 영상 내의 물체 인식률이 높아짐에 따라 관련 연구가 활발히 진행되고 있다. 따라서 본 연구에서는 보안 카메라 영상을 사용하여 화재를 감지할 수 있는 심층 학습 기반의 화재 감지기를 제안한다. 심층 학습 기반의 접근법은 영상에서 자동으로 특징을 학습할 수 있으므로 일반적으로 복잡한 상황에 대해서도 일반화가 가능하다. 본 논문에서는 화재감지 정확도와 속도 측면의 균형을 고려하여 두 개의 심층 합성곱 신경망 모델을 제안하였다. 실험을 통해 두 모델 모두 99%의 평균 정밀도로 화재를 감지할 수 있으며 첫 번째 모델은 초당 30장의 처리 속도와 76%의 정확도를 나타냈다. 두번째 모델은 초당 50장의 처리 속도와 61%의 정확도를 나타낸다. 또한 두 개의 모델의 메모리 사용량을 서로 비교하였으며 다양한 실제 화재 시나리오에서 테스트하여 신뢰할 수 있는 모델임을 증명하였다. 본 논문에 제안한 영상 기반 화재 감지기가 상용화된다면 상대적으로 실내 화재에 취약한 시각 장애인들의 안전에 도움이 될 것이다.
감성분석을 통한 텍스트의 긍/부정 판단은 의사결정 시스템을 포함한 여러 분야에서 중요한 역할을 맡고 있다. 이런 흐름에 맞춰 감성분석 기술은 여러 기술과 융합하여 발전해왔는데 문장 내 자질을 추출하여 이용하는 자질 공학적 접근 방식과 심층 신뢰 신경망을 이용한 구조 또한 응용 사례에 속한다. 본 논문에서는 이러한 응용 기술 중 심층 신경망을 응용한 분석기술을 사용하여 관광지에 대한 평점이 포함된 문장을 학습하고 이를 SNS 관광지 리뷰에 적용하여 평점을 매기는 시스템을 설계한다.
본 논문에서는 고령자를 위한 개별 웨어러블(Wearable) 기기를 이용한 낙상 감지에 대해 논한다. 신뢰할 수 있는 낙상 감지를 위한 저비용 웨어러블 기기를 설계하기 위해서 대표적인 두 가지 모델을 종합적으로 분석하여 제시한다. 기계 학습 모델인 의사결정 나무(Decision Tree), 랜덤 포래스트(Random Forest), SVM(Support Vector Machine)과 심층 학습 모델인 일차원(One-Dimensional) 합성곱 신경망(Convolutional Neural Network)을 사용하여 낙상 감지 학습 능력을 정량화하였다. 또한 입력 데이터에 적용하기 위한 데이터 분할, 전처리, 특징 추출 방법 등을 고려하여 검토된 모델의 유효성을 평가한다. 실험 결과는 전반적인 성능 향상을 보여주며 심층학습 모델의 유효성을 검증한다.
엄청난 성능에도 불구하고, 심층 신경망은 예측결과에 대한 설명이 없는 블랙 박스로 작동한다는 비판을 받고 있다. 이러한 불투명한 표현은 신뢰성을 제한하고 모델의 대한 과학적 이해를 방해한다. 본 연구는 여러 개의 교사 신경망으로부터 설명 중심의 학생 신경망으로 지식 증류를 통해 해석 가능성을 향상시키는 것을 제안한다. 구체적으로, 인간이 정의한 개념 활성화 벡터 (CAV)를 통해 교사 모델의 개념 민감도를 방향성 도함수를 사용하여 계량화한다. 목표 개념에 대한 민감도 점수에 비례하여 교사 지식 융합을 가중치를 부여함으로써 증류된 학생 모델은 양호한 성능을 달성하면서 네트워크 논리를 해석으로 집중시킨다. 실험 결과, ResNet50, DenseNet201 및 EfficientNetV2-S 앙상블을 7 배 작은 아키텍처로 압축하여 정확도가 6% 향상되었다. 이 방법은 모델 용량, 예측 능력 및 해석 가능성 사이의 트레이드오프를 조화하고자 한다. 이는 모바일 플랫폼부터 안정성이 중요한 도메인에 걸쳐 믿을 수 있는 AI 의 미래를 여는 데 도움이 될 것이다.
노후화된 아파트의 재고가 폭발적으로 증가하게 될 것으로 예상됨에 따라 콘크리트 시설물의 내구성을 향상시키기 위한 유지관리의 중요성이 증대되고 있다. 콘크리트 압축강도는 콘크리트 시설물의 내구성을 나타내는 대표적인 지표로, 시설물 유지관리를 위한 정밀 안전 진단에 있어서 중요한 항목이다. 그러나 콘크리트 압축강도를 측정하고 유지관리를 판단하는데 있어서 기존의 방법들은 시설물의 안전 문제, 고비용 문제, 낮은 신뢰성 문제 등의 한계점을 가진다. 기존의 콘크리트 시설물의 압축강도 진단 방법을 대체할 수 있는 방안으로, 본 연구는 심층 컨볼루션 신경망 기법을 활용하여 영상을 통해 콘크리트 압축강도를 예측할 수 있는 모델을 제안하였다. 또한 실험실 환경에서 콘크리트 시편 제작을 통해 구축한 콘크리트 압축강도 데이터셋을 적용하여 학습, 검증 및 테스트를 진행하였다. 그 결과 콘크리트 표면 영상으로 콘크리트 압축강도를 학습할 수 있음을 알 수 있었고, 본 연구에서 제안하는 모델의 유효성을 확인하였다.
유도탄의 비행 시험 중 고장 또는 비정상적인 기동이 발생하는 경우 비행을 계속하지 않도록 의도적으로 자폭한다. 이때 파편이 발생하며 안전 지역을 벗어났는지 여부를 실시간으로 추정하는 것이 중요하다. 본 논문에서는 Fully-Connected Neural Network(FCNN)를 이용하여 실시간으로 파편의 예상 낙하 영역 및 낙하 시간을 추정하는 방법을 제안한다. 많은 양의 학습 데이터 생성을 위해 Unscented Transform(UT)를 적용하였으며 신뢰도 확보를 위해 Monte-Carlo(MC) 시뮬레이션과 비교하여 파라미터를 선정하였다. 또한 제안한 방법의 추정 결과를 MC와 비교하여 성능을 분석하였다.
최근 기업의 지속가능경영 역량으로 대변되는 기업 ESG 성과(environmental, social, and corporate governance)가 투자의사 결정에 주요 요인 중 하나로 부각되고 있다. 전통적 ESG 성과 평가 프로세스는 평가기관마다의 고유 기준에 따라 질적 정성적 방식으로 수행되어 그 평가 소요 시간 및 비용이 큰 데 비해 투자의사 결정 시 신뢰성과 예측 가능성 및 적시성에 제약이 존재한다. 이에 본 연구에서는 정량화되고 공개된 기업 재무 정보를 활용하여 머신러닝을 통한 자동화된 기업 ESG 평가 예측을 시도하였다. 심층신경망 기법을 활용해 2019년부터 2021년까지 3년간 한국ESG기준원에서 제공한 1,780건의 ESG 평가에 대하여 총 12종(21,360건)의 시장 공개 재무 정보를 기반으로 예측 모형을 구축한 결과, 제안된 심층신경망 모형은 약 86%의 분류성능을 보여 여타 비교모형 대비 크게 높은 정확도를 나타냈다. 본 연구는 정량적이고 공개된 과거 기업 재무 정보만으로도 자동화된 프로세스를 통해 비교적 정확한 미래 ESG 평가 예측을 달성할 수 있었다는 점에 의의가 크다. 특히 기업 ESG 관련 정보 접근이 상대적으로 불리한 일반 투자자들의 입장에서 볼 때 낮은 비용과 적은 시간 투자로도 기업 ESG 성과 평가에 대한 예측 가능성과 적시성을 향상 시킬 수 있다는 점에 실용적 함의가 있다. 또한 본 연구는 향후 추가적인 국내외 데이터 수집 및 모형 고도화를 통해 기업 ESG 성과 예측 분야에서의 확장이 기대된다.
딥러닝은 인공신경망(neural network)이라는 인공지능분야의 모형이 발전된 형태로서, 계층구조로 이루어진 인공신경망의 내부계층(hidden layer)이 여러 단계로 이루어진 구조이다. 딥러닝에서의 주요 모형은 합성곱신경망(convolutional neural network), 순환신경망(recurrent neural network), 그리고 심층신뢰신경망(deep belief network)의 세가지라고 할 수 있다. 그 중에서 현재 흥미로운 연구가 많이 발표되어서 관심이 집중되고 있는 모형은 지도학습(supervised learning)모형인 처음 두 개의 모형이다. 따라서 본 논문에서는 지도학습모형의 가중치를 최적화하는 기본적인 방법인 오류역전파 알고리즘을 살펴본 뒤에 합성곱신경망과 순환신경망의 구조와 응용사례 등을 살펴보고자 한다. 본문에서 다루지 않은 모형인 심층신뢰신경망은 아직까지는 합성곱신경망 이나 순환신경망보다는 상대적으로 주목을 덜 받고 있다. 그러나 심층신뢰신경망은 CNN이나 RNN과는 달리 비지도학습(unsupervised learning)모형이며, 사람이나 동물은 관찰을 통해서 스스로 학습한다는 점에서 궁극적으로는 비지도학습모형이 더 많이 연구되어야 할 주제가 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.