U-국토 및 U-도시의 건설 및 관리를 위해 정밀 국토공간정보의 수요가 점증하고 있고 보다 신속한 갱신이 요구되고 있는 가운데 유비쿼터스 기술들과 융복합된 u-GIS기술에 대한 요구 또한 증가하는 추세다. 특히 건설 분야에 있어서의 이러한 수요를 보다 심층적으로 파악하기 위해, 건설공사 표준품셈 등을 이용하여 건설공사 공종/공정을 분류하고 이에 대한 수요의 우선순위를 도출하는 연구를 수행하였다. 본 논문은 u-GIS 기술을 필요로 하는 건설 현장에 위치/형상 정보 수요에 대한 조사, 분석을 통해 건설 인력, 자재, 장비의 u-GIS 기술의 적용 우선순위를 도출하는 것이다.
2008년 늦가을부터 2009년 봄까지 강원도 일부 지방에서 심각한 가뭄이 발생하여 태백지역에서는 87일 동안 제한급수가 실시되는 등 지역 주민들이 겪는 고통은 상당하였다. 2009년 태백시에서 발간한 가뭄백서에 따르면, 이번 가뭄으로 인한 태백지역의 피해 추정액은 980여억 원에 달한다고 한다. 본 연구에서는 가뭄지수들 중 토양수분지수(Soil Moisture Index)와 수자원가용지수(Water Availability Index)를 이용하여 태백지역에서 발생한 가뭄을 농업과 수문학적 관점으로 분류하여 정량화 하였다. 또한 태백지역의 물공급을 맡고 있는 광동댐의 운영을 분석함으로써 이번 가뭄의 발생 원인을 보다 심층적으로 분석하였다. 연구결과, 홍수기 동안 광동댐의 운영을 개선하여 9월초에 저수량을 충분히 확보하는 것이 태백지역 가뭄 해소의 관건임을 확인하였다.
본 논문에서 우리는 뇌 신호 측정 기술 중 하나인 뇌전도를 활용한 새로운 접근방식을 제안한다. 전통적으로 연구자들은 감정 상태의 분류성능을 향상시키기 위해 뇌전도 신호와 생체신호를 결합해왔다. 우리의 목표는 뇌전도와 결합된 생체신호의 상호작용 효과를 탐구하고, 뇌전도+생체신호의 조합이 뇌전도 단독사용 또는 임의로 생성된 의사 무작위 신호와 결합한 경우에 비해 감정 상태의 분류 정확도를 향상시킬 수 있는지를 확인한다. 네 가지 특징추출 방법을 사용하여 두 개의 공개 데이터셋에서 얻은 데이터 기반의 뇌전도, 뇌전도+생체신호, 뇌전도+생체신호+무작위신호, 및 뇌전도+무작위신호의 네 가지 조합을 조사했다. 감정 상태 (작업 대 휴식 상태)는 서포트 벡터 머신과 장단기 기억망 분류기를 사용하여 분류했다. 우리의 결과는 가장 높은 정확도를 가진 서포트 벡터 머신과 고속 퓨리에 변환을 사용할 때 뇌전도+생체신호의 평균 오류율이 뇌전도+무작위신호와 뇌전도 단독 신호만을 사용한 경우에 비해 각각 4.7% 및 6.5% 높았음을 보여주었다. 우리는 또한 다양한 무작위 신호를 결합하여 뇌전도+생체신호의 오류율을 철저하게 분석했다. 뇌전도+생체신호+무작위신호의 오류율 패턴은 초기에는 깊은 이중 감소 현상으로 인해 감소하다가 차원의 저주로 인해 증가하는 V자 모양을 나타냈다. 결과적으로, 우리의 연구 결과는 뇌파와 생체신호의 결합이 항상 유망한 분류성능을 보장할 수 없음을 시사한다.
사물인터넷에 사용되는 소형 통신 기기들은 적은 메모리 용량과 느린 연산 속도 때문에 고급 암호기법을 적용하지 못하기 때문에 각종 해킹에 취약하다. 본 논문은 433MHz 대역에서 동작하는 소형 송신기들의 인증 신뢰도를 높이기 위해 RF지문을 도입하고 분류 알고리즘으로 CNN (convolutional neural network) 을 사용한다. 각 송신기가 전송하는 프리엠블 신호를 소프트웨어정의라디오를 사용하여 추출하고 수집하여 학습 데이터 집합으로 만들고, 이를 신경망을 학습시키는 데에 사용한다. 네 가지의 시나리오에서 20개의 송신기의 식별을 테스트한 결과 높은 식별 정확도를 얻을 수 있었다. 특히 학습 데이터 수집 시의 위치와 다른 위치에서 테스트를 수행한 시나리오에서, 그리고 송신기가 걷는 속도로 이동하는 시나리오에서 각각 95.8%, 92.6%의 정확도를 산출함을 알 수 있었다.
본 연구는 낮은 자기분화수준을 가진 어머니의 양육불안 경험에 관한 연구로서 대상으로는 학령기 자녀가 있는 어머니 중 자기분화척도 수준이 낮고 양육에 대한 불안을 경험하고 있는 어머니들을 선정하여 심층인터뷰와 검사를 실시하였고 Giorgi의 현상학 방법으로 단계에 맞춰 경험적 현상을 분류하고 범주들을 중심으로 분석하여 일반적 구조기술로서 통합하였다. 현 시대적 과제로서 학령기 부모의 양육불안의 원인과 핵가족화로 인한 자녀의 수가 적어짐으로 인한 가족의 문제들과 양육불안에 대한 경험들을 범주로 묶어 일반화함으로써 자녀의 사회적응과 정서에 미치는 양육태도와 어머니가 가진 낮은 자기분화수준과 불안의 원인과 같은 문제점들을 인지하고 양육의 올바른 방향을 설정하는데 그 의의가 있다.
본 연구는 학령기 경계선 지능 아동을 대상으로 Q방법론을 적용하여 '학교'에 대한 주관적 인식유형과 특성을 파악하고자 하였다. Q표본은 학계 및 현장전문가 4인, 경계선 지능 아동 4인에 대한 심층면접과 관련 문헌고찰을 통해 21개를 선정하였고, P표본은 초등학교에 재학 중인 경계선 지능 아동 총 18명의 학부모와 본인의 동의를 거쳐 표집하였다. P표본은 5점 척도의 정규분포로 Q분류를 실시하였고 수집된 데이터는 Quanl PC 프로그램을 통해 분석하였다. 연구결과 학령기 경계선 지능아동의 학교에 대한 태도유형은 '참여적-의존형'과 '방관적-위축형'의 두 가지 유형으로 도출되었다. 본 연구결과를 통해 학교에 대한 태도는 아동의 자존감 및 가족 지지환경의 양상에 따라 달라질 수 있으며 각 유형별 소속감의 욕구와 안전의 욕구에 대한 적절한 교육복지적 개입이 필요함을 알 수 있었다. 본 연구결과는 경계선 지능아동의 학교에 대한 주관적 유형을 구체화함으로써 경계선 지능 아동이 초등교육을 통해 중등교육 이상의 교육 권리와 학습의 질을 유지하도록 돕기 위한 교육중재 방안에 기초자료를 제공했다는 점에서 함의가 있다.
본 논문에서는 커널 모델과 장단기 기억(Long-Short Term Memory, LSTM) 신경망을 결합한 보컬 및 비보컬 분리 방식을 제안한다. 기존의 음원 분리 방식은 비보컬 음원만 있는 구간에서 음원을 오추정하여 불필요한 비보컬 음원을 출력하는 한계가 있다. 따라서 본 논문에서는 커널 모델 기반의 보컬음 분리 방식에 LSTM 신경망 기반의 보컬 구간 분류 방식을 결합하여 보컬 음원의 오추정 문제를 개선하고 분리 성능을 향상시키고자 하였다. 또한 본 논문에서는 방식간의 결합 구조에 따라 병렬 결합형 분리 알고리즘과 직렬 결합형 분리 알고리즘을 제안하였으며, 실험을 통해 제안하는 방식들이 기존의 방식에 비해 더욱 향상된 분리 성능을 보이는 것을 확인할 수 있었다.
본 연구는 자율운항 선박의 원격 고장 진단 기법 개발의 일부로 수행되었다. 특히, 엔진 연료 계통 장비로부터 계측된 시계열 데이터로부터 상태 진단을 위한 알고리즘 구현 결과를 제시하였다. 엔진 연료 펌프와 청정기를 가진 육상 실험 장비로부터 진동 시계열 데이터 계측하였으며, 이상 감지, 고장 분류 및 고장 예측이 가능한 심층 학습(Deep Learning) 및 기계 학습(Machine Learning) 알고리즘을 구현하였다. 육상 실험 장비에 고장 유형 별로 인위적인 고장을 발생시켜 특징적인 진동 신호를 계측하여, 인공 지능 학습에 이용하였다. 계측된 신호 데이터는 선행 발생한 사건의 신호가 후행 사건에 영향을 미치는 특성을 가지고 있으므로, 시계열에 내포된 고장 상태는 시간 간의 선후 종속성을 반영할 수 있는 학습 알고리즘을 제시하였다. 고장 사건의 시간 종속성을 반영할 수 있도록 순환(Recurrent) 계열의 RNN(Recurrent Neural Networks), LSTM(Long Short-Term Memory models)의 모델과 합성곱 연산 (Convolution Neural Network)을 기반으로 하는 Conv1D 모델을 적용하여 예측 정확성을 비교하였다. 특히, 합성곱 계열의 RNN LSTM 모델이 고차원의 순차적 자연어 언어 처리에 장점을 보이는 모델임을 착안하여, 신호의 시간 종속성을 학습에 반영할 수 있는 합성곱 계열의 Conv1 알고리즘을 고장 예측에 사용하였다. 또한 기계 학습 모델의 효율성을 감안하여 XGBoost를 추가로 적용하여 고장 예측을 시도하였다. 최종적으로 연료 펌프와 청정기의 진동 신호로부터 Conv1D 모델과 XGBoost 모델의 고장 예측 성능 결과를 비교하였다
서지정보는 연구 주제의 최신 동향의 인지와 유용성을 검증하는 데에 참고할 수 있다. 즉, 각자 연구자들이 필요로 하는 문헌에 신속하게 접근하기 위해서는 학술논문에서 저자 정보, 요약, 초록, 참고문헌 등을 쉬운 방법으로 파악해야 한다. 그러나, 현재 출판되는 PDF 형식의 전자 학술논문은 출판 주체별로 고유한 양식을 띄고 있어서, 몇몇 특징에 의한 규칙 기반 추출법으로는 수많은 문헌에서 목표 정보를 추출하여 요약된 서지사항으로 자동 생성하기 어렵다. 이에 본 연구는 학술논문 서지사항 자동 생성에 있어서 양식의 다양성으로 인한 메타데이터 자동 추출의 난점을 극복할 방법을 제안한다. 제안하는 모델은 서지사항이 주로 기술되는 학술논문의 첫 페이지에서 목표 영역과 본문의 시작점을 구분할 수 있는 심층신경망 기반 모델과 앞의 모델로 추출된 서지사항을 상세한 메타데이터로 분류하고 재생성하는 규칙 기반 모델로 구성된다. 제안하는 모델은 참고문헌 요약정보를 생성하는 모델도 포함하는데, 본문의 말미와 참고문헌 시작점의 분리, 그리고 개별 참고문헌 추출을 규칙 기반 방법으로 진행하고, 추출한 각개 참고문헌의 서지정보를 분류하는 데에 심층신경망을 이용하도록 구성하였다. 추가로, 논문 자체의 서지정보를 전후처리 없이 추출/생성하는 모델의 가능성을 확인하기 위하여 참고문헌 영역까지 아우르는 모델을 구축하여 비교 실험을 진행하였다. 실험 결과 본 논문에서 제안하는 방식이 서지정보를 전후처리 하지 않고 진행한 비교 실험에 비하여 더 높은 성능을 보였다.
보행자 검출은 수년간 광범위하게 연구된 문제이며, 자율주행 자동차와 운전자 보조시스템에서 매우 중요한 역할을 차지하고 있다. 특히, 계층적 분류기[1]와 Histogram of Gradient[2]특징벡터 등 영상기반의 보행자 검출기법과 ConvNet같이 deep model을 이용하여 검출하는 기법들이 연구되었고 검출성능은 꾸준히 상승하였다. 하지만 보행자 검출은 작은 오차에도 생명과 연관된 문제를 야기할 수 있기 때문에, 자율주행 시스템의 보행자검출 오차율은 더욱 낮출 필요가 있다. 따라서 본 연구에서는 Faster R-CNN 응용 기법에 새로 개발한 데이터 학습 모델을 적용하여 보행자 검출 오류를 줄이는 기법을 제안한다. 그리고 기존에 제안된 모델들과 비교를 통해, 보행자 검출에 있어 제안된 방법의 우수성을 보이고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.