• 제목/요약/키워드: 심층신경망 알고리즘

검색결과 87건 처리시간 0.024초

심층 신경망 검색 기법을 통한 이미지 고해상도화 (Image Super Resolution Using Neural Architecture Search)

  • 안준영;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.102-105
    • /
    • 2019
  • 본 논문에서는 심층 신경망 검색 방법을 사용하여 이미지 고해상도화를 위한 심층 신경망을 설계하는 방법을 구현하였다. 일반적으로 이미지 고해상도화, 잡음 제거 및 번짐 제거를 위한 심층신경망 구조는 사람이 설계하였다. 최근에는 이미지 분류 등 다른 영상처리 기법에서 사용하는 심층 신경망 구조를 검색하기 위한 방법이 연구되었다. 본 논문에서는 강화학습을 사용하여 이미지 고해상도화를 위한 심층 신경망 구조를 검색하는 방법을 제안하였다. 제안된 방법은 policy gradient 방법의 일종인 REINFORCE 알고리즘을 사용하여 심층 신경망 구조를 출력하여 주는 제어용 RNN(recurrent neural network)을 학습하고, 최종적으로 이미지 고해상도화를 잘 실현할 수 있는 심층 신경망 구조를 검색하여 설계하였다. 제안된 심층 신경망 구조를 사용하여 이미지 고해상도화를 구현하였고, 약 36.54dB 의 피크 신호 대비 잡음 비율(PSNR)을 가지는 것을 확인할 수 있었다.

  • PDF

한국어 문서 분류를 위한 신경망 구조 탐색 (Neural Architecture Search for Korean Text Classification)

  • 지병규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.125-130
    • /
    • 2023
  • 최근 심층 신경망을 활용한 한국어 자연어 처리에 대한 관심이 높아지고 있지만, 한국어 자연어 처리에 적합한 신경망 구조 탐색에 대한 연구는 이뤄지지 않았다. 본 논문에서는 문서 분류 정확도를 보상으로 하는 강화 학습 알고리즘을 이용하여 장단기 기억 신경망으로 한국어 문서 분류에 적합한 심층 신경망 구조를 탐색하였으며, 탐색을 위해 사전 학습한 한국어 임베딩 성능과 탐색한 신경망 구조를 분석하였다. 탐색을 통해 찾아낸 신경망 구조는 기존 한국어 자연어 처리 모델에 대해 4 가지 한국어 문서 분류 과제로 비교하였을 때 일반적으로 성능이 우수하고 모델의 크기가 작아 효율적이었다.

  • PDF

심층신경망 기반의 해수 고유광특성 도출 (Derivation of Inherent Optical Properties Based on Deep Neural Network)

  • 이형탁;최혜민;김민규;윤석;김광석;문정언;한희정;박영제
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.695-713
    • /
    • 2023
  • 연안 해역에서 식물성플랑크톤, 부유입자, 용존유기물은 복합적이고 비선형적으로 해수반사도를 변화시킨다. 최근 빠르게 발전하는 신경망 기술은 복잡한 비선형 관계를 효과적으로 처리할 수 있는 장점이 있다. 기존 연구에서는 성분별 고유광특성을 도출하기 위하여 세 단계의 신경망을 구성하였으나 본 연구에서는 심층신경망을 직접 적용하는 알고리즘을 제안하였다. 본 연구에서 활용한 데이터세트는 국제해색조정그룹에서 제공하는 합성데이터를 활용하였으며, 입력데이터는 9개의 파장의 원격반사도를 입력하였다. 이를 통해 해수 고유광특성을 심층신경망을 기반으로 도출하였다. 성능을 평가하기 위해 준분석 알고리즘(quasi-analytical algorithm)과 비교하였으며, 데이터 분포에 따른 로그 변환 여부가 심층신경망 알고리즘의 성능에 영향을 미치는 정도를 비교 분석하였다. 그 결과, 준분석 알고리즘보다 심층신경망 알고리즘을 활용하면 부유입자에 대한 흡광계수를 제외한 고유광특성을 정확하게 추정할 수 있으며(R2 0.9 이상), 부유입자와 용존유기물의 흡광계수를 부유입자와 용존유기물 흡광계수로 각각 분리할 수 있었다. 그리고 심층신경망을 직접적으로 적용하는 알고리즘은 데이터의 로그 변환을 하지 않아도 성능 차이가 거의 없음을 파악할 수 있었다. 이 연구 결과를 해색 자료 처리에 실제 적용하기 위해서는 다양한 해역의 현장자료 및 추가적인 데이터 세트를 활용한 학습을 진행하여, 경험적 및 반분석적 방법과 비교 분석하고 알고리즘 간 장단점을 적절히 파악하는 연구가 필요하다.

음성 신호와 심층 잔류 순환 신경망을 이용한 파킨슨병 진단 (Parkinson's disease diagnosis using speech signal and deep residual gated recurrent neural network)

  • 신승수;김지연;구본미;김형국
    • 한국음향학회지
    • /
    • 제38권3호
    • /
    • pp.308-313
    • /
    • 2019
  • 노년기 3대 질환 중 하나인 파킨슨병은 환자의 70 % 이상이 음성 장애를 앓고 있으며 최근 음성 신호를 통한 파킨슨병의 진단 방법들이 고안되고 있다. 본 논문에서는 음성 특징을 이용한 심층 잔류 순환 신경망 기반의 파킨슨병 진단 방식을 제안한다. 제안하는 방식에서는 파킨슨병 진단을 위한 음성 특징을 선택하고 이를 심층 잔류 순환 신경망에 적용하여 파킨슨병 환자를 식별한다. 제안하는 심층 잔류 순환 신경망은 심층 순환 신경망에 잔류 학습 방식을 결합한 알고리즘으로 파킨슨병 진단에서 기존의 식별 알고리즘보다 더 높은 인식률을 보인다.

도로 노면 파손 영상의 다중 분류 심층 신경망 평가를 통한 Backbone Network 선정 기법 (A Selection Method of Backbone Network through Multi-Classification Deep Neural Network Evaluation of Road Surface Damage Images)

  • 심승보;송영은
    • 한국ITS학회 논문지
    • /
    • 제18권3호
    • /
    • pp.106-118
    • /
    • 2019
  • 최근 들어 인공 지능을 이용한 영상 객체 인식에 대한 연구 및 개발이 활발하게 진행되고 있다. 그 연장선상에서 도로 유지 및 관리 분야에도 관련 연구의 활용도가 크게 향상될 것으로 기대된다. 그 중에서도 특히 도로 노면 파손 객체 인식 (Object Detection) 을 위한 인공 지능모델이 지속적으로 개발되고 있다. 이러한 객체 인식 알고리즘을 개발하려면 우선적으로 특징지도를 생성하는 Backbone Network가 반드시 필요한데, 본 논문에서는 이를 선정하는 방법을 제안하고자 한다. 이를 위해 6,000여 장의 도로 노면 파손 영상 데이터를 확보하고, 근래에 많이 사용되는 4종류의 심층 신경망을 활용하여 성능을 비교한다. 3가지의 성능 평가 방법을 적용하여 심층 신경망의 특징을 분석하고 최적의 심층 신경망을 결정한다. 또한 하이퍼 파라미터의 최적 조율을 통해 성능을 향상시키고, 최종적으로 도로 노면 파손 영상 분류를 위하여 85.9%의 정확도로 수행이 가능한 경량화된 Backbone Network용 심층 신경망을 제안한다.

효과적인 음성 인식 평가를 위한 심층 신경망 기반의 음성 인식 성능 지표 (Speech Recognition Accuracy Measure using Deep Neural Network for Effective Evaluation of Speech Recognition Performance)

  • 지승은;김우일
    • 한국정보통신학회논문지
    • /
    • 제21권12호
    • /
    • pp.2291-2297
    • /
    • 2017
  • 본 논문에서는 음성 데이터베이스를 평가하기 위해 여러 가지의 음성 특성 지표 추출 알고리즘을 설명하고 심층 신경망 기반의 새로운 음성 성능 지표 생성 방법을 제안한다. 선행 연구에서는 효과적인 음성 인식 성능 지표를 생성하기 위해 대표적인 음성 인식 성능 지표인 단어 오인식률(Word Error Rate, WER)과 상관도가 높은 여러 가지 음성 특성 지표들을 조합하여 새로운 성능 지표를 생성하였다. 생성된 음성 성능 지표는 다양한 잡음 환경에서 각 음성 특성 지표를 단독으로 사용할 때보다 단어 오인식률과 높은 상관도를 나타내어 음성 인식 성능을 예측하는데 효과적임을 입증 하였다. 본 논문에서는 심층 신경망을 기반으로 한 음성 특성 지표 추출 방법에 대해 설명하며 선행 연구에서 조합에 사용한 GMM(Gaussian Mixture Model) 음향 모델 확률 값을 심층 신경망 학습을 통해 추출한 확률 값으로 대체해 조합함으로써 단어 오인식률과 보다 높은 상관도를 갖는 것을 확인한다.

심층 학습 모델을 이용한 EPS 동작 신호의 인식 (EPS Gesture Signal Recognition using Deep Learning Model)

  • 이유라;김수형;김영철;나인섭
    • 스마트미디어저널
    • /
    • 제5권3호
    • /
    • pp.35-41
    • /
    • 2016
  • 본 논문에서는 심층 학습 모델 방법을 이용하여 EPS(Electronic Potential Sensor) 기반의 손동작 신호를 인식하는 시스템을 제안한다. 전기장 기반 센서인 EPS로부터 추출된 신호는 다량의 잡음이 포함되어 있어 이를 제거하는 전처리과정을 거쳐야 한다. 주파수 대역 특징 필터를 이용한 잡음 제거한 후, 신호는 시간에 따른 전압(Voltage) 값만 가지는 1차원적 특징을 지닌다. 2차원 데이터를 입력으로 하여 컨볼루션 연산을 하는 알고리즘에 적합한 형태를 갖추기 위해 신호는 차원 변형을 통해 재구성된다. 재구성된 신호데이터는 여러 계층의 학습 층(layer)을 가지는 심층 학습 기반의 모델을 통해 분류되어 최종 인식된다. 기존 확률 기반 통계적 모델링 알고리즘은 훈련 후 모델을 생성하는 과정에서 초기 파라미터에 결과가 좌우되는 어려움이 있었다. 심층 학습 기반 모델은 학습 층을 쌓아 훈련을 반복하므로 이를 극복할 수 있다. 실험에서, 제안된 심층 학습 기반의 서로 다른 구조를 가지는 컨볼루션 신경망(Convolutional Neural Networks), DBN(Deep Belief Network) 알고리즘과 통계적 모델링 기반의 방법을 이용한 인식 결과의 성능을 비교하였고, 컨볼루션 신경망 알고리즘이 다른 알고리즘에 비해 EPS 동작신호 인식에서 보다 우수한 성능을 나타냄을 보였다.

심층 신경망 병렬 학습 방법 연구 동향 (A survey on parallel training algorithms for deep neural networks)

  • 육동석;이효원;유인철
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.505-514
    • /
    • 2020
  • 심층 신경망(Deep Neural Network, DNN) 모델을 대량의 학습 데이터로 학습시키기 위해서는 많은 시간이 소요되기 때문에 병렬 학습 방법이 필요하다. DNN의 학습에는 일반적으로 Stochastic Gradient Descent(SGD) 방법이 사용되는데, SGD는 근본적으로 순차적인 처리가 필요하므로 병렬화하기 위해서는 다양한 근사(approximation) 방법을 적용하게 된다. 본 논문에서는 기존의 DNN 병렬 학습 알고리즘들을 소개하고 연산량, 통신량, 근사 방법 등을 분석한다.

데이터 예측을 위한 텐서플로우 기반 기계학습 알고리즘 비교 연구 (A Comparative Study of Machine Learning Algorithms Based on Tensorflow for Data Prediction)

  • ;장성봉
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권3호
    • /
    • pp.71-80
    • /
    • 2021
  • 기계학습에서 정확한 데이터 예측을 위해서는 적절한 인공신경망 알고리즘을 선택해야 한다. 이러한 알고리즘에는 심층 신경망 (DNN), 반복 신경망 (RNN), 장단기 기억 (LSTM) 네트워크 및 게이트 반복 단위 (GRU) 신경망등을 들 수 있다. 개발자가 실험을 위해, 하나를 선택해야 하는 경우, 각 알고리즘의 성능에 대한 충분한 정보가 없었기 때문에, 직관에 의존할 수 밖에 없었다. 본 연구에서는 이러한 어려움을 완화하기 위해 실험을 통해 예측 오류(RMSE)와 처리 시간을 비교 평가 하였다. 각 알고리즘은 텐서플로우를 이용하여 구현하였으며, 세금 데이터를 사용하여 학습을 수행 하였다. 학습 된 모델을 사용하여, 세금 예측을 수행 하였으며, 실제값과의 비교를 통해 정확도를 측정 하였다. 또한, 활성화 함수와 다양한 최적화 함수들이 알고리즘에 미치는 영향을 비교 분석 하였다. 실험 결과, GRU 및 LSTM 알고리즘의 경우, RMSE(Root Mean Sqaure Error)는 0.12이고 R2값은 각각 0.78 및 0.75로 다른 알고리즘에 비해 더 낳은 성능을 보여 주었다. 기본 심층 신경망(DNN)의 경우, 처리 시간은 가장 낮지만 예측 오류는 0.163로 성능은 가장 낮게 측정 되었다. 최적화 알고리즘의 경우, 아담(Adam)이 오류 측면에서 최고의 성능을, 처리 시간 측면에서 최악의 성능을 보여 주었다. 본 연구의 연구결과는 데이터 예측을 위한 알고리즘 선택시, 개발자들에게 유용한 정보로 사용될 것으로 예상된다.

심층 컨볼루션 신경망을 이용한 번호판 인식 시스템 (License Plate Recognition System using Deep Convolutional Neural Network)

  • 임성훈;박병주;이재흥
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.754-757
    • /
    • 2016
  • 기존 번호판 인식은 직접 특징 추출 알고리즘을 개발하여 완전 연결 신경망으로 특징을 분류하는 방법이 보편적이다. 본 연구는 전처리 과정에서 번호판 후보군 검출 및 세그먼테이션을 수행하고 특징 추출 없이 미리 학습된 심층 컨볼루션 신경망을 통해 문자를 분류하는 방법을 제안한다. 직접 수집한 2,900장의 번호판 데이터베이스를 이용하여 훈련 집합 및 검증 집합을 구성하였다. 훈련 집합과 검증 집합에 대해 실험한 결과 번호판 후보군 검출률은 97%를 얻을 수 있었고, 이에 대한 인식률은 95%를 얻었다.