• Title/Summary/Keyword: 심지층처분장

Search Result 11, Processing Time 0.039 seconds

Validation of Performance of Engineered Barriers in a Geological Repository: Review of In-Situ Experimental Approach (심지층처분장 공학적방벽 성능 실증: 현장실험적 접근법 검토)

  • Cho, Won-Jin;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.137-164
    • /
    • 2018
  • The guarantee of the performance of the engineered barriers in a geological repository is very important for the long-term safety of disposal as well as the efficient design of the repository. Therefore, the performance of the engineered barriers under repository condition should be demonstrated by in-situ experiments conducted in an underground research laboratory. This article provides a review of the major in-situ experiments that have been carried out over the past several decades at underground research laboratories around the world to validate the performance of engineered barriers of a repository, as well as their results. In-situ experiments to study the coupled thermal-hydraulic-mechanical behavior of the engineered barrier system used to simulate the post-closure performance of the repository are analyzed as a priority. In addition, in-situ experiments to investigate the performance of the buffer material under a real repository environment have been reviewed. State-of-the art in-situ validations of the buffer-concrete interaction, and the installation of the buffer, backfill and plug, as well as characterization of the near-field rock and the corrosion of the canister materials are, also performed.

Effects of Excavation Damaged Zone on Thermal Analysis of Multi-layer Geological Repository (다층 심지층처분장 열해석에 미치는 암반손상대의 영향)

  • Cho, Won-Jin;Kim, Jin-Seop;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.75-94
    • /
    • 2019
  • As the present single-layer repository concept requires too large an area for the site of the repository, a multi-layer repository concept has been suggested to improve the disposal density. The effects of the excavation damaged zone around the multi-layer repository constructed in the deep host rock on the temperature distribution in the repository were analyzed. For the thermal analysis of the multi-layer repository, the hydrothermal model was used to consider the resaturation process occurring in the buffer, backfill and rock. The existence of an excavation damaged zone has a significant effect on the temperature distribution in the repository, and the maximum peak temperatures of double-layer and triple-layer repositories can rise to $7^{\circ}C$ and $12^{\circ}C$, respectively depending on the size of the excavation damaged zone and the degree of decrease of the thermal conductivity. The dominant factor affecting the peak temperature in the multi-layer repository is the decrease of thermal conductivity in the excavation damaged zone, and the excavation damaged zone formed around the deposition hole has more significant effects on the peak temperature than does the excavation damaged zone formed around the disposal tunnel.

Study on Basic Requirements of Geoscientific Area for the Deep Geological Repository of Spent Nuclear Fuel in Korea (사용후핵연료 심지층처분장부지 지질환경 기본요건 검토)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Park, Ju-Wan;Park, Jin-Baek;Song, Jong-Soon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.63-75
    • /
    • 2012
  • This paper gives some basic requirements and preferences of various geological environmental conditions for the final deep geological repository of spent nuclear fuel (SNF). This study also indicates how the requirements and preferences are to be considered prior to the selection of sites for a site investigation as well as the final disposal in Korea. The results of the study are based on the knowledge and experience from the IAEA and NEA/OECD as well as the advanced countries in SNF disposal project. This study discusses and suggests preliminary guideline of the disposal requirements including geological, mechanical, thermal, hydrogeological, chemical and transport properties of host rock with long term geological stabilities which influence the functions of a multi-barrier disposal system. To apply and determine whether requirements and preferences for a given parameter are satisfied at different stages during a site selection and suitability assessment of a final disposal site, the quantitative criteria in each area should be formulated with credibility through relevant research and development efforts for the deep geological environment during the site screening and selection processes as well as specific studies such as productions of safety cases and validation studies using a generic underground research laboratory (URL) in Korea.

Analysis of Key Parameters for Designing the Spent Nuclear Fuel Disposal Container in Korea (사용후핵연료 처분용기 설계를 위한 주요인자 분석)

  • Choi, Jong-Won;Cho, Dong-Keun;Choi, Hui-Ju
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2006
  • For the first step to develop a reference disposal container of spent fuel to be used in a deep geological repository, this paper examined safe dimensions of the disposal container on the points of nuclear criticality and radiation safety and mechanical structural safety and provided basic information for dimensioning the container and configuration of the container components, and establishing the favorable and safe disposal conditions. When the safety factor for stress due to the external loads (hydrostatic and swelling pressure) is taken as 2.0, the safe diameter of the filler material to provide enough container strength under the assumed external loads is found to be 112cm with 13cm spacing between inner baskets in PWR container. Also the thickness of the thinner section between the fuel basket and the surface of the cast insert is determined to be 150 mm. Regarding these dimensions of the container, the PWR fuel container is sketched to accommodate 4 square assemblies or 297 CANDU fuel 297 bundles (33 circle tubes x 9 stacks). However the top and bottom parts need to be checked again through the detail radiation shielding analysis with respects to the emplacement position and handling processes of the disposal container.

Structural Analysis for the Conceptual Design of a High Level Radioactive Waste Repository in a Deep Deposit (심지층 고준위 방사성 폐기물 처분장의 개념설계를 위한 구조적 안정성 해석)

  • 권상기;장근무;강철형
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.102-113
    • /
    • 1999
  • Two-dimensional and three-dimensional DEM programs, UDEC and 3DEC, were used to investigate the mechanical stability of the conceptual design of deposition drift and deposition holes constructed in a crystalline rock mass. From the simulations, the influence of discontinuities, the number of deposition holes, and deposition hole interval on the stability of deposition drift and deposition holes could be determined. From the two-dimensional and three-dimensional analysis. it was concluded that three-dimensional analysis should be carried 7ut fur deriving reliable conclusions. Even though the deposition hole interval changed from 8 m to 3 m, which did not damage the mechanical stability of the deposition drift.

  • PDF

Review of In-situ Installation of Buffer and Backfill and Their Water Saturation Management for a Deep Geological Disposal System of Spent Nuclear Fuel (국외 사례를 통한 사용후핵연료 심층처분시스템 완충재 및 뒤채움재의 현장시공 및 포화도 관리 기술 분석)

  • Ju-Won Yun;Won-Jin Cho;Hyung-Mok Kim
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.104-126
    • /
    • 2024
  • Buffer and backfill play an essential role in isolating high-level radioactive waste and retard the migration of leaked radionuclides in deep geological disposal system. A bentonite mixture, which exhibits a swelling property, is considered for buffer and backfill materials, and excessive groundwater inflow from surrounding rock mass may affect stability and efficiency of their role as an engineered barrier. Therefore, stringent quality control as well as in-situ installation management and inflow water constrol for buffer and backfill are required to ensure the safety of deep disposal facilities. In this study, we analyzed the design requirements of buffer and backfill by examining various laboratory tests and a field study of the Steel Tunnel Test at the Äspö Hard Rock Laboratory in Sweden. We introduced how to control the quality of buffer and backfill construction in-field, and also presented how to handle excessive groundwater inflow into disposal caverns, validating the groundwater retention capacity of bentonite pellets and the effectiveness of geotexile use.

Preliminary Review on Function, Needs and Approach of Underground Research Laboratory for Deep Geological Disposal of Spent Nuclear Fuel in Korea (사용후핵연료 심층처분을 위한 지하연구시설(URL)의 필요성 및 접근 방안)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Lee, Sang-Jin;Kim, Hyunjoo;Choi, Byong-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.157-178
    • /
    • 2013
  • This study gives a conceptual and basic direction to develop a URL (underground research laboratory) program for establishing the performance and safety of a deep geological disposal system in Korea. The concept of deep geological disposal is one of the preferred methodologies for the final disposal of spent nuclear fuel (SNF). Advanced countries with radioactive waste disposal have developed their own disposal concepts reasonable to their social and environmental conditions and applied to their commercial projects. Deep geological disposal system is a multi-barrier system generally consisting of an engineered barrier and natural barrier. A disposal facility and its host environment can be relied on a necessary containment and isolation over timescales envisaged as several to tens of thousands of years. A disposal system is not allowed in the commercial stage of the disposal program without a validation and demonstration of the performance and safety of the system. All issues confirming performance and safety of a disposal system include investigation, analysis, assessment, design, construction, operation and closure from planning to closure of the deep geological repository. Advanced countries perform RD&D (research, development & demonstration) programs to validate the performance and safety of a disposal system using a URL facility located at the preferred rock area within their own territories. The results and processes from the URL program contribute to construct technical criteria and guidelines for site selection as well as suitability and safety assessment of the final disposal site. Furthermore, the URL program also plays a decisive role in promoting scientific understanding of the deep geological disposal system for stakeholders, such as the public, regulator, and experts.

Assessment of a Pre-conceptual Design of a Spent PWR Fuel Disposal Container (가압경수로형 사용후핵연료 처분용기의 예비 개념설계 평가)

  • Choi, Jong-Won;Cho, Dong-Keun;Lee, Yang;Choi, Heui-Joo;Lee, Jong-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.41-50
    • /
    • 2006
  • In this paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid & bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert, the Maximum Von Mises stress from the 102 cm-container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by $\sim20$ tons.

  • PDF

Pre-conceptual Design of a Spent PWR Fuel Disposal Container (가압경수로형 사용후핵연료 처분용기의 예비 개념설계 평가)

  • CHO Dong-Keun;CHOI Jongwon;Lee Yang;CHOI Heui-Joo;LEE Jong-Youl
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.153-162
    • /
    • 2005
  • In this Paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid & bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert, the Maximum Von Mises stress from the 102 cm container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by ${\~}$20 tons.

  • PDF