• Title/Summary/Keyword: 실험 및 수치계산

Search Result 740, Processing Time 0.028 seconds

Performance Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed ISO 9705 Room (반밀폐된 ISO 9705 화재실에서 비정상 화재특성 예측을 위한 FDS의 성능평가)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2012
  • The objective of this study is to evaluate the prediction accuracy of FDS(Fire Dynamic Simulator) for the thermal and chemical characteristics of under-ventilated fire with unsteady fire growth in a semi-closed compartment. To this end, a standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time (until maximum 2.0 MW based on ideal heat release rate) using a spray nozzle located at the center of enclosure. To verify the capability of FDS, the predicted results were compared with a previous experimental data under the identical fire conditions. It was observed that with an appropriate grid system, the numerically predicted temperature and heat flux inside the compartment showed reasonable agreement with the experimental data. On the other hand, there were considerable limitations to predict accurately the unsteady behaviors of CO and $CO_2$ concentration under the condition of continuous fire growth. These results leaded to a discrepancy between the present evaluation of FDS and the previous evaluation conducted for steady-state under-ventilated fires. It was important to note that the prediction of transient CO production characteristics using FDS was approached carefully for the under-ventilated fire in a semi-closed compartment.

An Efficient Application of XML Schema Matching Technique to Structural Calculation Document of Bridge (XML 스키마 매칭 기법의 교량 구조계산서 적용 방안)

  • Park, Sang Il;Kim, Bong-Geun;Lee, Sang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.51-59
    • /
    • 2012
  • An efficient application method of XML schema matching technique to the document structure of structural calculation document (SCD) of bridge is proposed. With 30 case studies, a parametric study on weightings of name, sibling, child, and parent elements of XML scheme component that are used in the similarity measure of XML schema matching technique has been performed, and suitable weighting to analyze document structure of SCD is suggested. A simplified formula for quantification of similarity is also introduced to reduce computation time in huge scale document structure of SCDs. Numerical experiments show that the suggested method can increase the accuracy of XML schema matching by 10% with suitable weighting parameters, and can maintain almost the same accuracy without weighting parameters compared to previous studies. In addition, computation time can be reduced dramatically when the proposed simplified formula for the quantification of similarity is used. In the numerical experiments of testing 20 practical SCDs of bridges, the suggested method is superior to previous studies in the accuracy of analyzing document structure and 4 to 460 times faster than the previous results in computation time.

Onset of Natural Convection in Transient Hot Wire Device for Measuring Thermal Conductivity of Nanofluids (비정상열선법을 이용한 나노유체 열전도도 측정 시 자연대류 개시점에 대한 연구)

  • Lee, Seung-Hyun;Kim, Hyun-Jin;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.279-285
    • /
    • 2011
  • We perform a numerical study to determine the time of onset of natural convection in a transient hot wire (THW) device for measuring the thermal conductivity of nanofluids. The samples used in this simulation are water-based $Al_2O_3$ nanofluids with volume fractions of 1%, 4%, and 10%, and the properties are calculated by theoretical models and experimental correlations. The THW apparatus using coated wire is modeled by the control-volume-based finite difference method, and the start of natural convection is determined by observing the temperature rise of the wire under a gravity field. The onset time is 11.5 s for water and 41.6 s for water-based $Al_2O_3$ nanofluids predicted by Maxwell thermal conductivity model with a 10% volume fraction. We confirm that the onset time of natural convection of nanofluids in the cylinder increases with the nanoparticle volume fraction. We suggest a correlation for predicting the onset time on the basis of the numerical results. Finally, it is shown that the measurement error due to natural convection is negligible if the measurement using the transient hot wire method is completed before the onset of natural convection in the base fluid.

Effect of Compressibility on Flow Field and Fiber Orientation in the Filling Stage of Injection Molding (사출성형의 충전시 고분자용융액의 압축성이 유동장과 단섬유 배향에 미치는 영향)

  • Lee, S.C.;Ko, J;Youn, J.R.
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.217-226
    • /
    • 1998
  • The anisotropy caused by the fiber orientation, which is inevitably generated by the flow during injection molding of short fiber reinforced polymers, greatly influences dimensional accuracy, mechanical properties, and other quality of the final product. Since the filling stage of the injection molding process plays a vital role in determining fiber orientation, an accurate analysis of flow field for the filling stage is needed. Unbalanced filling occurs when a complex or a multi-cavity mold is used leading to development of regions where the fiber suspension is under compression. It is impossible to make an accurate calculation of the flow field during filling with the analysis assuming incompressible fluid. A mold with four cavities with different filling times was produced to compare the numerical analysis results with the experimental data. There was a good agreement between the experimental and theoretical results when the compressibility of the polymer melt was considered for the numerical simulation. The fiber orientation states for compressible and incompressible fluids were also compared qualitatively as well as quantitatively in this study.

  • PDF

An Analysis on the Sinking Resistance of Purse Seine - 2. In the Case of the Model Purse Seine with Different Netting Material and Sinkers - (旋網의 沈降 抵抗 解析 - 2. 網地材料와 沈子量 다른 模型網의 경우 -)

  • Kim, Suk-Jong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • This study deals with an analysis on the sinking resistance for the model purse seine, in the case of different netting material and sinkers. The experiment was carried out using rune simplified model seines of knotless nettings. Dimension of model seines 420cm for corkline and 85cm for seine depth, three groups of models rigged 25, 45 and 60g with the same weighted sinkers in water were used. These were named PP-25, PA-25, PES-25, PP-45, PA-45, PES-45, PP-60, PA-60 and PES-60 seine. The densitie($\rho$) of netting materials were 0.91g/cm$cm^3$, 1.14g/cm$cm^3$ and 1.38g/cm$m^3$. Experiments carried out in the observation channel in a flume tank under still water conditions. Sinking motion was recorded by the one set of TV-camera for VTR, and reading coordinate carried out by the video digitization system. Differential equations were derived from the conservation of momenta of the model purse seines and used to determine the sinking speeds of the depths of leadline and the other portions of the seines. An analysis carried out by simultaneous differential equations for numerical method by sub-routine Runge-Kutta-Gill The results obtained were as follows : 1. Average sinking speed of leadline for the model seines rigged 60g with the same weighted sinkers in water was fastest for 12.2cm/sec of PES seine, followed by 11.4cm/sec of PA and 10.7cm/sec of PP seines. 2. The coefficient of resistance for netting of seine was estimated to be $K_D=0.09(\frac{\rho}{\rho_w})^4$ 3. The coefficient of resistance for netting bundle of seine was estimated to be $C_R=0.91(\frac{\rho}{\rho_w})$ 4. In all seines, the calculated depths of leadline closely agreed with the measured ones, each 25g, 45g, 60g of weighted sinkers were put into formulas meas.=1.04cal., meas.=0.99cal. and meas.=0.98 cal.

Analysis of Influence for Breach Flow According to Asymmetry of Breach Cross-section (제방붕괴 형상의 비대칭성에 따른 붕괴흐름의 영향 분석)

  • Kim, Sooyoung;Choi, Seo-hye;Lee, Seung Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.557-565
    • /
    • 2016
  • The risk of collapse in hydraulic structures has become more elevated, due to the increased probability and scale of flooding caused by global warming and the resulting abnormal climatic conditions. When a levee, a typical hydraulic structure, breaks, an enormous breach flow pours into the floodplain and much flood damage then occurs. It is important to accurately calculate the breach discharge in order to predict this damage. In this study, the variation of the breach discharge with the asymmetry in the cross-section of the levee breach was analyzed. Through hydraulic experiments, the cross-section of the breach was analyzed during the collapse using the BASD (Bilateral ASymmetry Degree), which was developed to measure the degree of asymmetry. The relationship of the breach discharge was identified using the BASD. Additionally, the variation of the breach flow measured by the BASD was investigated through a 3-D numerical analysis under the same flow conditions as those in the experiment. It was found that the assumption of a rectangular breach cross-section, which is generally used for the estimation of the inundation area, can cause the breach discharge to be overestimated. According to the BASD, the breach flow is decreased by the interference effect in the breach section of the levee. If the breach flow is calculated while considering the BASD in the numerical analysis of the flooding, it is expected that the predicted inundation area can be estimated accurately.

Estimation of Head Loss Coefficients at Surcharged Square Manhole Using Numerical Model (수치모형을 이용한 과부하 사각형 맨홀에서의 손실계수 산정)

  • Kim, Jung-Soo;Lim, Ga-Hui;Rim, Chang-Soo;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.143-150
    • /
    • 2011
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban area. Therefore, it is important to analyze the head losses at manholes, especially in case of surcharged flow. The stream characteristics were analyzed and head loss coefficients were estimated by using the computational fluid dynamics(CFD) model, FLUENT 6.3, at surcharged square manhole in this study. The CFD model was carefully assessed by comparing simulated results with the experimental ones. The study results indicate that there was good agreement between simulation model and experiment. The CFD model was proved to be capable of estimating the head loss coefficients at surcharged manholes. The head loss coefficients with variation of the ratio of manhole width(B) to inflow pipe diameter(d) and variation of the drop height at surcharged square manhole with a straight-path through were calculated using FLUENT 6.3. As the ratio of B/d increases, head loss coefficient increases. The depth and head loss coefficient at manhole were gradually increased when the drop height was more than 5cm. Therefore, the CFD model(Fluent 6.3) might be used as a tool to simulate the water depth, energy losses, and velocity distribution at surcharged square manhole.

A Performance Study on CPU-GPU Data Transfers of Unified Memory Device (통합메모리 장치에서 CPU-GPU 데이터 전송성능 연구)

  • Kwon, Oh-Kyoung;Gu, Gibeom
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.5
    • /
    • pp.133-138
    • /
    • 2022
  • Recently, as GPU performance has improved in HPC and artificial intelligence, its use is becoming more common, but GPU programming is still a big obstacle in terms of productivity. In particular, due to the difficulty of managing host memory and GPU memory separately, research is being actively conducted in terms of convenience and performance, and various CPU-GPU memory transfer programming methods are suggested. Meanwhile, recently many SoC (System on a Chip) products such as Apple M1 and NVIDIA Tegra that bundle CPU, GPU, and integrated memory into one large silicon package are emerging. In this study, data between CPU and GPU devices are used in such an integrated memory device and performance-related research is conducted during transmission. It shows different characteristics from the existing environment in which the host memory and GPU memory in the CPU are separated. Here, we want to compare performance by CPU-GPU data transmission method in NVIDIA SoC chips, which are integrated memory devices, and NVIDIA SMX-based V100 GPU devices. For the experimental workload for performance comparison, a two-dimensional matrix transposition example frequently used in HPC applications was used. We analyzed the following performance factors: the difference in GPU kernel performance according to the CPU-GPU memory transfer method for each GPU device, the transfer performance difference between page-locked memory and pageable memory, overall performance comparison, and performance comparison by workload size. Through this experiment, it was confirmed that the NVIDIA Xavier can maximize the benefits of integrated memory in the SoC chip by supporting I/O cache consistency.

Modeling 2D residence time distributions of pollutants in natural rivers using RAMS+ (RAMS+를 이용한 하천에서 오염물질의 2차원 체류시간 분포 모델링)

  • Kim, Jun Song;Seo, Il Won;Shin, Jaehyun;Jung, Sung Hyun;Yun, Se Hun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.495-507
    • /
    • 2021
  • With the recent industrial development, accidental pollution in riverine environments has frequently occurred. It is thus necessary to simulate pollutant transport and dispersion using water quality models for predicting pollutant residence times. In this study, we conducted a field experiment in a meandering reach of the Sum River, South Korea, to validate the field applicability and prediction accuracy of RAMS+ (River Analysis and Modeling System+), which is a two-dimensional (2D) stream flow/water quality analysis program. As a result of the simulation, the flow analysis model HDM-2Di and the water quality analysis model CTM-2D-TX accurately simulated the 2D flow characteristics, and transport and mixing behaviors of the pollutant tracer, respectively. In particular, CTM-2D-TX adequately reproduced the elongation of the pollutant cloud, caused by the storage effect associated with local low-velocity zones. Furthermore, the transport model effectively simulated the secondary flow-driven lateral mixing at the meander bend via 2D dispersion coefficients. We calculated the residence time for the critical concentration, and it was elucidated that the calculated residence times are spatially heterogeneous, even in the channel-width direction. The findings of this study suggest that the 2D water quality model could be the accidental pollution analysis tool more efficient and accurate than one-dimensional models, which cannot produce the 2D information such as the 2D residence time distribution.

A Numerical Simulation of the Effect of the Injection Angle and Velocity of the $CO_2$ Agent Nozzle on the Characteristics of $CO_2$ Concentration Distribution ($CO_2$ 소화제 노즐 분사각 및 분사속도가 $CO_2$ 농도분포특성에 미치는 영향에 관한 수치적 연구)

  • Park, Chan-Su
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.44-53
    • /
    • 2006
  • We have conducted a numerical simulation under two-dimensional unsteady conditions in order to analyze the effect according to the injection angle and velocity of the $CO_2$ agent nozzle which is one of the elements for the fixed type $CO_2$ fire extinguishing system installed in a ship on the characteristics of flow and $CO_2$ concentration distribution. The flow fields and concentration fields were measured and analyzed. We can found that the difference of flow patterns according to the conditions of $CO_2$ agent injection nozzle, and in all the conditions of $CO_2$ agent injection nozzle, the iso-concentration line was expanded from the region at which vortex was generated to the surroundings. We can expected that the intensity of the wall jet on the bottom floor was generated differently and the iso-concentration lines were expanded or shrunk according to the angle of $CO_2$ agent injection nozzle. In case of increasing $CO_2$ agent injection velocity maintaining the flow quantity of the $CO_2$ agent injection equally, the iso-concentration line of $CO_2$ agent on bottom floor can be formed more higher than in case of decreasing $CO_2$ agent injection velocity.