• Title/Summary/Keyword: 실험적 해석

Search Result 7,263, Processing Time 0.041 seconds

Relationship between Water Stable Aggregate and Macroporosity in Upland Soils Calculated by Fragmentation Fractal Dimension (파쇄프랙탈차원을 이용한 밭토양 내수성입단과 대공극률의 관계 평가)

  • Han, Kyung-Hwa;Cho, Hyun-Jun;Lee, Hyup-Sung;Hur, Seung-Oh;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.58-64
    • /
    • 2009
  • The objectives of this study were to investigate the aggregate fragmentation in wet-sieving and to evaluate the relationship between the aggregate fragmentation fractal dimension and macro-porosity of upland soils, using three different textural types of soils including Gopyeng series (Fine, Typic Hapludalfs), Gyuam series (Fine silty over coarse silty, Fluvaquentic Eutrudepts), and Jungdong series (Coarse loamy, Typic Udifluvents) located in Gyeonggi province. Undisturbed soil samples with five replicates were seasonally sampled and used for measuring water stable aggregate, macropores, and physico-chemical properties of soils. The aggregate stability in wet-sieving was digitalized as three types of fragmentation fractal dimension ($D_f$), geometric mean diameter (GMD), and mean weight diameter (MWD). $D_f$ had higher correlation with GMD than with MWD. Seasonal aggregate stability showed the highest values in summer, and decreased in the order of spring and autumn. The macroporosity had higher in topsoil, in autumn, and in ridge, than in plow pan layer, in summer, and in row, respectively. The relationship between $D_f$ and macroporosity, especially more than 99 m, showed high correlation only in soils with $D_f$ less than 3.1, which means more aggregated soils compared to soils with $D_f$ more than 3.1. Besides, in the soils with the fractal dimension less than 3.1, the power function relation between saturated hydraulic conductivity and macroporosity more than 99 m had relatively high determinant coefficient, and vice versa. Therefore, it could be thought that fragmentation fractal dimension is available for confirming macroporosity induced from aggregation.

A Comparative Analysis of Ensemble Learning-Based Classification Models for Explainable Term Deposit Subscription Forecasting (설명 가능한 정기예금 가입 여부 예측을 위한 앙상블 학습 기반 분류 모델들의 비교 분석)

  • Shin, Zian;Moon, Jihoon;Rho, Seungmin
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.97-117
    • /
    • 2021
  • Predicting term deposit subscriptions is one of representative financial marketing in banks, and banks can build a prediction model using various customer information. In order to improve the classification accuracy for term deposit subscriptions, many studies have been conducted based on machine learning techniques. However, even if these models can achieve satisfactory performance, utilizing them is not an easy task in the industry when their decision-making process is not adequately explained. To address this issue, this paper proposes an explainable scheme for term deposit subscription forecasting. For this, we first construct several classification models using decision tree-based ensemble learning methods, which yield excellent performance in tabular data, such as random forest, gradient boosting machine (GBM), extreme gradient boosting (XGB), and light gradient boosting machine (LightGBM). We then analyze their classification performance in depth through 10-fold cross-validation. After that, we provide the rationale for interpreting the influence of customer information and the decision-making process by applying Shapley additive explanation (SHAP), an explainable artificial intelligence technique, to the best classification model. To verify the practicality and validity of our scheme, experiments were conducted with the bank marketing dataset provided by Kaggle; we applied the SHAP to the GBM and LightGBM models, respectively, according to different dataset configurations and then performed their analysis and visualization for explainable term deposit subscriptions.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

A Research on Network Intrusion Detection based on Discrete Preprocessing Method and Convolution Neural Network (이산화 전처리 방식 및 컨볼루션 신경망을 활용한 네트워크 침입 탐지에 대한 연구)

  • Yoo, JiHoon;Min, Byeongjun;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2021
  • As damages to individuals, private sectors, and businesses increase due to newly occurring cyber attacks, the underlying network security problem has emerged as a major problem in computer systems. Therefore, NIDS using machine learning and deep learning is being studied to improve the limitations that occur in the existing Network Intrusion Detection System. In this study, a deep learning-based NIDS model study is conducted using the Convolution Neural Network (CNN) algorithm. For the image classification-based CNN algorithm learning, a discrete algorithm for continuity variables was added in the preprocessing stage used previously, and the predicted variables were expressed in a linear relationship and converted into easy-to-interpret data. Finally, the network packet processed through the above process is mapped to a square matrix structure and converted into a pixel image. For the performance evaluation of the proposed model, NSL-KDD, a representative network packet data, was used, and accuracy, precision, recall, and f1-score were used as performance indicators. As a result of the experiment, the proposed model showed the highest performance with an accuracy of 85%, and the harmonic mean (F1-Score) of the R2L class with a small number of training samples was 71%, showing very good performance compared to other models.

A Study on the Frictional Resistance Chracteristics of Pressurized Soil Nailing Using Rapid Setting Cement (초속경 시멘트를 사용한 가압식 쏘일네일링의 주입시간에 따른 마찰저항특성에 관한 연구)

  • Lee, Arum;Shin, Eunchul;Lee, Chulhee;Rim, Yongkwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Although the soil nailing method is generally used as a gravity grouting, the development and application of pressurized grouting method has recently increased to address the problem of joint generation and filling due to grouting. Pressurized grouting of the soil nailing method is generally used in combination with ordinary portland cement and water. In the field, the cement is mixed with the rapid setting cement to reduce curing time because ordinary portland cement takes more than 10 days to satisfy the required strength. In this study, uniaxial compression tests and laboratory tests were carried out to confirm the efficiency of the grouting material according to the mixing ratio of rapid setting cement. The mixing ratio of 30% grouting satisfies the required strength within 7 days and satisfies the optimum gel time. As a result of the laboratory test with granite weathered soil, the reinforcing effect was confirmed to be 1.5 times as compared with the gravity type at an injection time of 10 seconds and a strain of 15%. The friction resistance increases linearly with the increase of the injection time, but it is confirmed that the friction resistance decreases due to the hydraulic fracturing effect at the injection time exceeding the limit injection pressure. Numerical analysis was performed to compare the stability of slopes not reinforced with slopes reinforced with gravity and pressurized soil nailing.

Adsorption Characteristics of Brilliant Green by Coconut Based Activated Carbon : Equilibrium, Kinetic and Thermodynamic Parameter Studies (야자계 입상 활성탄에 의한 brilliant green의 흡착 특성 : 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.198-205
    • /
    • 2019
  • The adsorption equilibrium, kinetic, and thermodynamic parameters of brilliant green adsorbed by coconut based granular activated carbon were determined from various initial concentrations ($300{\sim}500mg\;L^{-1}$), contact time (1 ~ 12 h), and adsorption temperature (303 ~ 323 K) through batch experiments. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Harkins-Jura, and Elovich isotherm models. The estimated Langmuir dimensionless separation factor ($R_L=0.018{\sim}0.040$) and Freundlich constant ($n^{-1}=0.176{\sim}0.206$) show that adsorption of brilliant green by activated carbon is an effective treatment process. Adsorption heat constants ($B=12.43{\sim}17.15J\;mol^{-1}$) estimated by the Temkin equation corresponded to physical adsorption. The isothermal parameter ($A_{HJ}$) by the Harkins-Jura equation showed that the heterogeneous pore distribution increased with increasing temperature. The maximum adsorption capacity by the Elovich equation was found to be much smaller than the experimental value. The adsorption process was best described by the pseudo second order model, and intraparticle diffusion was a rate limiting step in the adsorption process. The intraparticle diffusion rate constant increased because the dye activity increased with increases in the initial concentration. Also, as the initial concentration increased, the influence of the boundary layer also increased. Negative Gibbs free energy ($-10.3{\sim}-11.4kJ\;mol^{-1}$), positive enthalpy change ($18.63kJ\;mol^{-1}$), and activation energy ($26.28kJ\;mol^{-1}$) indicate respectively that the adsorption process is spontaneous, endothermic, and physical adsorption.

Structural elucidation of immuno-stimulating polysaccharide, galactomannan isolated from Colocasia esculenta (토란으로부터 분리한 면역활성 다당 galactomannan의 구조적 특성 규명)

  • Lee, Hee-Won;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.595-603
    • /
    • 2020
  • To elucidate the structure-function relationship of polysaccharides obtained from Colocasia esculenta, the immuno-stimulating polysaccharide, CE-4a was purified to homogeneity from the crude polysaccharide (CE) extracted from the corms of C. esculenta by two subsequent column chromatographies using DEAE-Sepharose FF and Sephadex G-100, and analysis of their immuno-stimulatory activities and structure were conducted. CE-4a showed an increase in anti-complementary activity in a dose-dependent fashion. The molecular mass was estimated to be 182.4 kDa, which mainly consisted of galactose (43.5%) and mannose (18.2%). Methylation analysis indicated that CE-4a comprised at least 10 different glycosyl linkages, such as terminal Galp, 3-linked Galp, and 4-linked Manp, as well as a characteristic linkage, 2,4,6-branched Manp residue. To analyze the fine structure of CE-4a, it was sequentially digested using endo-α-(1→4)-polygalacturonase, exo-α-galactosidase and endo-β-1,4-D-mannanase. These analyses suggested that CE-4a is to be a highly branched galactomannan with a (1→4)-mannan backbone and galactopyranosyl oligosaccharide side chains.

Study on the Mineral Carbonation from Autoclaved Lightweight Concrete (ALC) (경량 기포콘크리트를 이용한 광물탄산화 연구)

  • Chae, Soo-Chun;Lee, Seung-Woo;Bang, Jun-Hwan;Song, Kyoung-Sun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.439-450
    • /
    • 2020
  • Global warming caused by the emission of greenhouse gases into the atmosphere is being treated as a major problem for the human life, and mineral carbonation is drawing attention as one of many countermeasures against this situation. In this study, mineral carbonation experiments using autoclaved lightweight concrete (ALC) were performed under various conditions to determine its potential as a carbonation material. ALC can be regarded as a promising material for carbonation because it contains about 27 wt.% of CaO, a major component of mineral carbonation. The CaCO3 content produced as a result of the carbonation of ALC calculated on the assumption that all of the CaO content participates in mineral carbonation is about 40 wt.%. The optimum conditions for the mineral carbonation reaction from ALC are the solid-liquid ratio of 0.01 and the reaction time of 180 minutes when calcite is considered as a single product, or 0.06 and 180 minutes when mixture of calcite and vaterite can be considered. The coexistence of vaterite with calcite at solid-liquid ratio of 0.06 or higher was interpreted to be the case where vaterite formed in the later stage and did not change to calcite until the reaction was completed.

Development of seawater inflow equations considering density difference between seawater and freshwater at the Nakdong River estuary (해담수 밀도차를 고려한 낙동강하굿둑 해수유입량 산정식 개발)

  • Jeong, Seokil;Lee, Sanguk;Hur, Young Teck;Kim, Youngsung;Kim, Hwa Young
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.383-392
    • /
    • 2022
  • The restoration of the Nakdong River estuary is one of the most important projects of the Ministry of Environment, Republic of Korea. A real-scale experiment of gate operation was executed from 2019 to 2020, and a pilot operation was performed in 2021. The gate of Nakdong River Estuary Barrier (NEB) is supposed to be continuously opened based on the experiment results. Many critical decisions should be made immediately during the experiment based on the real-time measured data and numerical analysis considering the seawater inflows. The decision-making sequence was made systematically with the accurate estimation of seawater inflow. The estimation of seawater inflow is the main research objective and the equations of seawater inflow were developed, reflecting the structural characteristics of NEB. The inflow equations were developed in two forms, overflow and underflow. ADCP (Acoustic Doppler Current Profiler) was used to measure seawater inflow, check the accuracy of the developed equations, and derive the flow coefficient. The comparison error of the developed equations was about 3% compared to the measured data.

Development of Three-dimensional Inversion Algorithm of Complex Resistivity Method (복소 전기비저항 3차원 역산 알고리듬 개발)

  • Son, Jeong-Sul;Shin, Seungwook;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.180-193
    • /
    • 2021
  • The complex resistivity method is an exploration technique that can obtain various characteristic information of underground media by measuring resistivity and phase in the frequency domain, and its utilization has recently increased. In this paper, a three-dimensional inversion algorithm for the CR data was developed to increase the utilization of this method. The Poisson equation, which can be applied when the electromagnetic coupling effect is ignored, was applied to the modeling, and the inversion algorithm was developed by modifying the existing algorithm by adopting comlex variables. In order to increase the stability of the inversion, a technique was introduced to automatically adjust the Lagrangian multiplier according to the ratio of the error vector and the model update vector. Furthermore, to compensate for the loss of data due to noisy phase data, a two-step inversion method that conducts inversion iterations using only resistivity data in the beginning and both of resistivity and phase data in the second half was developed. As a result of the experiment for the synthetic data, stable inversion results were obtained, and the validity to real data was also confirmed by applying the developed 3D inversion algorithm to the analysis of field data acquired near a hydrothermal mine.