This paper classifies the self-defense techniques used by the malicious software based on their approaches, introduces the packing technique as one of the code protection methods and proposes a way to quickly analyze the packed malicious codes. Packing technique hides a malicious code and restore it at runtime. To analyze a packed code, it is initially required to find the entry point after restoration. To find the entry point, it has been used reversing the packing routine in which a jump instruction branches to the entry point. However, the reversing takes too much time because the packing routine is usually obfuscated. Instead of reversing the routine, this paper proposes an idea to search some features of the startup code in the standard library used to generate the malicious code. Through an implementation and a consequent empirical study, it is proved that the proposed approach is able to analyze malicious codes faster.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.4
/
pp.287-294
/
2021
A Python-based LSTM model was constructed using a Tensorflow backend to estimate the amount of outflow during floods in the Gokgyo-cheon basin flowing into the Sapgyo Lake. To understand the effects of the length of input data used for learning, i.e., the sequence length, on the performance of the model, the model was implemented by increasing the sequence length to three, five, and seven hours. Consequently, when the sequence length was three hours, the prediction performance was excellent over the entire period. As a result of predicting three extreme rainfall events in the model verification, it was confirmed that an average NSE of 0.96 or higher was obtained for one hour in the leading time, and the accuracy decreased gradually for more than two hours in the leading time. In conclusion, the flood level at the Gangcheong station of Gokgyo-cheon can be predicted with high accuracy if the prediction is performed for one hour of leading time with a sequence length of three hours.
Nowadays, email-based targeted attacks using malcode-bearing documents have been steadily increased. To improve the success rate of the attack and avoid anti-viruses, attackers mainly employ zero-day exploits and relevant social engineering techniques. In this paper, we propose an architecture of the email vaccine cloud system to prevent targeted attacks using malcode-bearing documents. The system extracts attached document files from email messages, performs behavior analysis as well as signature-based detection in the virtual machine environment, and completely removes malicious documents from the messages. In the process of behavior analysis, the documents are regarded as malicious ones in cases of creating executable files, launching new processes, accessing critical registry entries, connecting to the Internet. The email vaccine cloud system will help prevent various cyber terrors such as information leakages by preventing email based targeted attacks.
Proceedings of the Korean Society of Computer Information Conference
/
2014.07a
/
pp.369-370
/
2014
본 논문에서는 안드로이드 환경에서 클래스 반사(Reflection)과 예외처리를 이용하여 안드로이드 보호 시스템을 우회하여 임의의 코드를 수행할 수 있는 방법을 제시한다. 일반적인 자바 환경과는 달리 안드로이드 환경에서는 보안 강화를 위해 APK 파일 내 루트 디렉토리의 클래스 파일만을 반사를 통해 동적 로딩이 가능하다. 하지만, 본 논문에서는 클래스 반사와 예외 처리를 이용하여 임의의 디렉토리 내 파일을 로딩 및 동적 실행할 수 있는 방법을 보이며 이 방법은 저자가 알기로는 기존에 알려지지 않은 방법이다. 이를 기반으로, 본 논문에서는 AES 암호와 동적 로딩을 이용하여, 모바일 어플리케이션의 내부 코드를 은폐하는 기법을 제안한다. 제안기법을 활용 시, 첫째 공격자의 입장에서는 내부 코드를 은폐하여 백신을 우회하는 악성코드 제작이 가능하고, 둘째, 프로그램 제작자의 입장에서는 핵심 알고리즘을 은폐하여 저작권을 보호하는 코드 제작이 가능하다. 안드로이드 버전 4.4.2(Kitkat)에서 프로토타입을 구현하여 제안 기법의 실효성을 보였다.
The commensurate number of the attacks and infringement targeting a vulnerability of the game service has been increasing constantly, due to the dramatic growth and expansion of the impact of the game industry. However, there exist no subsequent researches for the differentiated technology, which is to prevent the reverse function of the game service. Therefore, in this study, we examined the current status of infringement toward online game services which are provided in the market currently and designed the proper technical measures for a manipulation of the game service which is the most vulnerable part. We have encrypted an execution file and decrypted it in real time process. Furthermore, we conducted debugging, disassemble, and prevented a its own memory dump, also concealed the information to overcome the module dependency to preclude a manipulation.
Jo, A-Ra;Jeong, Chi-Yoon;Chang, Beom-Hwan;Na, Jung-Chan
Proceedings of the Korea Information Processing Society Conference
/
2009.04a
/
pp.1466-1469
/
2009
최근 웹 서비스 환경에서 공격자가 자신의 근원지를 은닉하기 위하여 여러 단계의 경유지를 거쳐 공격을 시도하는 사례가 증가하고 있으며, 이에 대한 법률적 증거 확보 및 능동적인 대처를 위하여 웹 어플리케이션에서의 역추적 기술이 필요하다. 현재 자바 애플릿이나 ActiveX, 플러그인, 웹 로그 등을 이용한 응용 계층의 추적 기술이 개발되고 있지만, 웹 클라이언트에 의하여 차단될 가능성이 높고, 플러그인 종류 및 호환되지 않는 운영 환경 등 제약조건으로 인하여 사용에 제한이 있다. 본 논문에서는 액션 스크립트를 이용한 웹 클라이언트 모니터링 시스템을 제안한다. 제안된 시스템은 웹 클라이언트가 실행을 인식하지 못하고 수행되어 웹 클라이언트에 의한 차단을 막을 수 있고, 다양한 운영 환경에서 사용이 가능하다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.3
/
pp.493-501
/
2020
For the obfuscation of Flow Analysis on the Android operating system, the size of the Flow Graph can be large enough to make analysis difficult. To this end, a library in the form of aar was implemented so that it could be inserted into the application in the form of an external library. The library is designed to have up to five child nodes from the entry point in the dummy code, and for each depth has 2n+1 numbers of methods from 100 to 900 for each node, so it consists of a total of 2,500 entry points. In addition, entry points consist of a total of 150 views in XML, each of which is connected via asynchronous interface. Thus, the process of creating a Inter-procedural Control Flow Graph has a maximum of 14,175E+11 additional cases. As a result of applying this to application, the Inter Procedure Control Flow Analysis too generates an average of 10,931 edges and 3,015 nodes with an average graph size increase of 36.64%. In addition, in the APK analyzing process showed that up to average 76.33MB of overhead, but only 0.88MB of execution overhead in the user's ART environment.
The Transactions of the Korea Information Processing Society
/
v.7
no.2
/
pp.385-391
/
2000
Recently, neural network research for forecasting the consecutive controlling rules of the future is being progressed, using the series data which are different from the traditional statistical analysis methods. In this paper, we suggest the pruning algorithm for the fast and exact weather forecast that excludes the hidden layer of the early optional designed nenral network. There are perform the weather forecast experiments using the 22080 kinds of weather data gathered from 1987 to 1996 for proving the efficiency of this suggested algorithm. Through the experiments, the early optional composed $26{\times}50{\times}1$ nenral network became the most suitable $26{\times}2{\times}1$ structure through the pruning algorithm suggested, in the optimum neural network $26{\times}2{\times}1$, in the case of the error temperature ${\pm}0.5^{\circ}C$, the average was 33.55%, in the case of ${\pm}1^{\circ}C$, the average was 61.57%, they showed more superior than the average 29.31% and 54.47% of the optional designed structure, also. we can reduce the calculation frequency more than maximum 25 times as compared with the optional sturcture neural network in the calculation frequencies.
Through artificial neural network education using spreadsheets, non-major undergraduate students can understand the operation principle of artificial neural networks and develop their own artificial neural network software. Here, training of the operation principle of artificial neural networks starts with the generation of training data and the assignment of correct answer labels. Then, the output value calculated from the firing and activation function of the artificial neuron, the parameters of the input layer, hidden layer, and output layer is learned. Finally, learning the process of calculating the error between the correct label of each initially defined training data and the output value calculated by the artificial neural network, and learning the process of calculating the parameters of the input layer, hidden layer, and output layer that minimize the total sum of squared errors. Training on the operation principles of artificial neural networks using a spreadsheet was conducted for undergraduate non-major students. And image training data and basic artificial neural network development results were collected. In this paper, we analyzed the results of collecting two types of training data and the corresponding artificial neural network SW with small 12-pixel images, and presented methods and execution results of using the collected training data for Orange machine learning model learning and analysis tools.
KIPS Transactions on Computer and Communication Systems
/
v.4
no.1
/
pp.23-30
/
2015
Reflection is a feature of the Java programming language that can examine and manipulate components of program itself. If you use the reflection, you can get an obfuscation effect of Java source because it converts sources into complicated structures. However, when using it, strings of components name of program are exposed. Therefore, it cannot prevent static analysis. In this paper, we presents a method and a tool of interfere with static analysis using reflection. And in this case, exposed strings are encoded using Vigen$\acute{e}$re cipher. Experimental results show that this tool is effective in increasing the overall complexity of the source code. Also the tool provides two types decryption method based on server and local. It can be selected based on the importance of the API because it affects the execution speed of the application.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.