• Title/Summary/Keyword: 실질적 과학 탐구

Search Result 29, Processing Time 0.025 seconds

Features of Science Classes in Science Core Schools Identified through Semantic Network Analysis (언어네트워크분석을 통해 본 과학중점학교 과학수업의 특징)

  • Kim, Jinhee;Na, Jiyeon;Song, Jinwoong
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.565-574
    • /
    • 2018
  • The purpose of this study is to investigate the features of science classes of Science Core Schools (SCSs) perceived by students. 654 students from 14 SCSs were surveyed with two open-ended questions on the features of science classes. The students' responses were analyzed with NetMiner 4.5, in terms of the centrality (of betweenness and of degree) analysis and the community analysis. The results of the research are as follows: (1) the science classes of SCSs were perceived by students to be of the environment of free questioning, active participation and communication, caring teacher, more science experiments and advanced contents, and knowledge sharing; (2) science classes in SCSs were perceived to be different from those of ordinary high schools because SCSs provide more opportunities for science-related special courses (like project work, advanced science subjects), extra-curricular activities, inquiry and research activities, school supports, hard-working classroom environment, longer studying hours, R&E and club activities. The students' perceptions of SCS science classes appear to be in line with the characteristics of 'good' science lessons from previous studies. The SCS project itself and the features of SCS science classes would help us to see how we introduce educational innovations into actual schools.

Analyzing the Status Quo of Docent Training Program and Searching Its Development Direction in Science Museum of Korea (과학관 도슨트 양성 프로그램의 실태 분석 및 발전 방향 모색)

  • Park, Young-Shin;Lee, Jung-Hwa
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.881-901
    • /
    • 2011
  • The science museum in the past satisfied visitors only by interacting them with simple objects and exhibition, while one in modern times was requested to meet the need of visitors in their engagement in educational programs. To meet the visitors' need, the science museum made efforts to train, educate, and assign docents so that they can interact with visitors and serve the educational purpose of visitation. In this study, we analyzed the strengths and weakness of docent training programs from science museums/science centers nationally and internationally, to make implication on how to design a docent training and professional program. Programs from four national and four international science centers/museums were selected as a sample for analysis. Their docent training programs were compared with the data of surveys and interviews and emails from docents and docent managers/evaluators. Artifacts and documents of the docent training programs were also collected and used to construct the validity in analyzing the data, resulting in the well-developed docent training program as the critical one for enriching science museum education. The results included; First, we need to recruit and train docents who interact visitors directly but they need to be differentiated from regular volunteers for promoting science museum education for the purpose of popularization of science. Additionally, Second, we need to develop and run docent training program where docents can experience 'informal learning' exhibition interpreting strategies through the real field from mentoring from the experienced/senior docents beyond 'formal learning' exhibition content. Third, we need to equip docents with skills to make scientific literacy possible at science museum-such as experiencing scientific ethics through scientific inquiry-which happens limited at school education.

Exploring the Types of Elementary Students' Scientific Creativity According to the Structural Relationship between Creative Process and Product (창의 과정과 산물의 구조적 관계에 따른 초등학생의 과학 창의성 유형 탐색)

  • Kim, Minju;Lim, Chaeseong
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.1
    • /
    • pp.33-49
    • /
    • 2022
  • This study aims to explore, using both quantitative and qualitative data analyzing the structural relationship between creative process and product, the types of elementary students' scientific creativity. For this, 105 fifth-graders responded to a scientific creativity test that assesses creative process and product, and four students who scored the highest were interviewed. In the interview, they were asked about the cognitive process they used in generating the creative product. Then, correlation analysis and structural equation modeling were used, along with the interview data, to type the students. The main findings of the study are as follows. First, the structural equation modeling of creative process and product gave satisfactory results in absolute and incremental fit indexes. Second, among the three components of creative process - knowledge, inquiry skill-observation, and creative thinking skills -, only creative thinking skills had significant effects on creative product. Third, divergent thinking skills had the strongest correlation with the creative product, followed by convergent thinking skills. Associational thinking skills did not have significant correlation. Fourth, elementary students' scientific creativity could be categorized into Creative Type, Useful Type, Original Type, and Non-creative Type, based on their creative product. The Non-creative Type could be further classified into Common Type, Repetitive Type, Non-response Type, Irrelevant Type, and Abstract Type. Fifth, most students used either knowledge or observation in their creative process, making them either Knowledge-oriented Type or Observation-oriented Type. In addition, there were DT Type, DT-CT Type, and DT-CT-AT Type among the students, based on the kinds of creative thinking skills they mainly used in the process. This study provides implications for educators and researchers in scientific creativity education.

The Influences of Coteaching through Mentoring upon Pedagogical Content Knowledge of Beginning Science-Gifted Education Teachers (멘토링을 통한 코티칭이 초임 과학영재교육 담당교사들의 교과교육학지식에 미치는 영향)

  • Noh, Taehee;Yang, Chanho;Lee, Jaewon;You, Jiyeon;Kang, Hunsik
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.5
    • /
    • pp.1021-1040
    • /
    • 2013
  • In order to explore the influences of coteaching through mentoring upon the teaching professionalism of beginning science-gifted education teachers, this case study deeply investigated the change processes in the aspects of pedagogical content knowledge (PCK). Two beginning teachers planned, performed and reflected together their science instructions for science-gifted students in secondary school during four 3-hour classes. Since the second instruction, pre-, during-, and post-mentoring were conducted, we collected various data related to teachers' planning processes, videotaped all coteaching science classes, and wrote field notes. We also recorded in-depth interviews with the teachers and the whole process of mentoring. All the data were analyzed by using the constant comparative method. The results of the analyses indicated that coteaching through mentoring positively changed the teachers' PCK. Above all, we found that coteaching and mentoring strategies generated a significant synergy effect through a mutually complementary relationship. The teachers developed deep practical knowledge about the enrichment curriculum, which placed more emphasis on developing cognitive and/or affective characteristics of science-gifted students. The teachers also improved their knowledge about the characteristics of science-gifted students and the instructional strategies appropriate for developing them. Moreover, practical knowledge about assessment domains and methods used in science-gifted education were improved. Knowledge on science content necessary for effective inquiry instruction was also improved.

Current Status and Teachers' Perception About Research Ethics Education and Creating Ethical Research Environment for Gifted Students in Science (과학영재를 위한 연구윤리교육 및 윤리적 연구환경조성의 현황과 이에 대한 영재담당 교사들의 인식 조사)

  • Lee, Jiwon
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.853-864
    • /
    • 2018
  • In this study, we surveyed the 68 teachers from eight science high school and four science academy for the gifted through questionnaires about research ethics education and ethical research environment in Korea. First, we examined the current state of research ethics education. Half of the responding schools included research ethics education in their curriculum. Although only half of the schools have this in their curriculum, more than half of the total number of teachers surveyed personally taught research ethics in class, and almost 90% of the teachers said they taught the research ethics during students' research activity. However, 63.24% of teachers said that research ethics education was not enough still. Second, we investigated the ethical research environment. In terms of knowledge and experience, the teachers were competent, and they were creating an environment that enabled peers and self-verification. However, research ethics, regulations and verification systems are not well equipped in schools. Since the principals are highly interested in research ethics education, there seems to be enough improvement on the ethical research environment. Finally, teachers said that additional research ethics education, change in student attitude, development and continuous maintenance of the verification system, encouragement to develop ethical environment, and clear guidelines were needed for ethical research of students. The result of this research will be able to provide the following. First, it will help set up a direction for research ethics education at every gifted school. Second, it will provide insights on how schools and teachers can create an ethical research environment for the students of science-gifted students.

Developmental Study of Science Education Content Standards (과학교육 내용표준 개발)

  • Park, Hyun-Ju;Kim, Young-Min;Noh, Suk-Goo;Jeong, Jin-Su;Lee, Eun-Ah;Yu, Eun-Jeong;Lee, Dong-Wook;Park, Jong-Won;Baek, Yoon-Su
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.4
    • /
    • pp.729-750
    • /
    • 2012
  • The purpose of this study was to develop science education content standards, to guide in developing k-12 national science curriculum, and to provide guidance for local districts and schools to effectively apply the national science curriculum to their school curriculum. We suggest ideas for science education content standards, describing how science education content standards would look through reviews of literature for background research, surveys, and interviews to set the frame, developing standards for each sub-component, and examining and revising. The science education content standards consist of situation, components, and performance. Situation refers to when, where, and how science was needed. Components refers to what kind of knowledge and what kind of process and understanding should be taught in school science, like Nature of Science, Scientific Creativity, Scientific Inquiry, & Disciplinary Core Ideas. Performance refers to what we would like to achieve through science education.

How to Use EVT Figures for Actor Voice Training I (배우 음성 훈련을 위한 EVT 구조연습 활용방안 I)

  • Lee, Young-Su
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.136-148
    • /
    • 2021
  • In this study, the theoretical principle and structural practice of Estill Voice Training model that enables independent control of voice organs in the actor's acting art using voice as a medium of artistic expression. Its purpose is to explore the positive utility that can be applied to operation. The research on the speech science methodology that controls the differences in speech output due to the principle of the generation organ is a reality that has not been actively introduced in Korea compared to the existing actor's speech training that encompasses both the mind and the body. Voice can guarantee the accuracy and stability of operation when an understanding of our body is preceded based on anatomical physiology as well as contribute to the characterization of the character's phonetic character an element of character creation. Considering the training model through proprioception in actor voice training has practical value and alternative significance that the actor can be sought as a principle and practical methodology in the process of generating a series of target sounds.

A Study on the 6th Middle School Science Curriculum and Its Implementation (제 6차 중학교 과학 교육과정과 그 운영에 대한 조사 연구)

  • Choe, Seung-Urn;Han, In-Ok;Oh, Phil-Seok;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.4
    • /
    • pp.622-634
    • /
    • 1999
  • We have investigated the 6th middle school science curriculum and its implementation based upon the results of middle school science teachers' and professors' ratings and self-reportings. The national-wide survey was administrated to obtain the data from 213 teachers of 112 middle schools and 43 professors of colleges of education. The survey items correspond to four stages of science curriculum. In the stage of the planned science curriculum, 'goals', 'framework of contents' and 'contents' are relevant to the basic guideline for curriculum revision, 'the more emphasis on inquiry activities'. However, the amount of contents is not appropriate, and 'methods' are difficult to attain. In the stage of the written science curriculum, 'goals', 'framework of contents', 'contents', 'methods' and 'evaluations' are not useful for teachers to teach science. In the stage of the implemented science curriculum, a small number of teachers use the issues of local community, organize the different group activities, develop assessment tools cooperatively, and conduct a lesson and a program considering students' diversities. This is partially because of the large amount of learning contents, the lack of materials and the weakness of supporting system. Finally, in the stage of the attained science curriculum, the students' achievements under the 6th curriculum is not higher than those under the other curricula.

  • PDF

Geo-educational Values of the Jebudo Geosite in the Hwaseong Geopark, Korea (화성 지질공원 제부도 지질명소의 지질교육적 가치)

  • Ha, Sujin;Chae, Yong-Un;Kang, Hee-Cheol;Kim, Jong-Sun;Park, Jeong-Woong;Shin, Seungwon;Lim, Hyoun Soo;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.311-324
    • /
    • 2021
  • Recently, ten geosites have been considered in Hwaseong for endorsement as national geoparks, including the Jebudo, Gojeongri Dinosaur Egg Fossils, and Ueumdo geosites. The Jebudo geosite in the southern part of the Seoul metropolitan area has great potential for development as a new geoscience educational site because it has geological, geographical (landscape), and ecological significance. In this study, we described the geological characteristics through field surveys in the Jebudo geosite. We evaluated its potential as a geo-education site based on comparative analysis with other geosites in Hwaseong Geopark. In addition, we reviewed the practical effect of field education at geosites on the essential concepts and critical competence-oriented education emphasized in the current 2015 revised science curriculum. The Jebudo Geosite is geologically diverse, with various metamorphic rocks belonging to the Precambrian Seosan Group, such as quartzite, schist, and phyllite. Various geological structures, such as clastic dikes, faults, joints, foliation, and schistosity have also been recorded. Moreover, coastal geological features have been observed, including depositional landforms (gravel and sand beaches, dunes, and mudflats), sedimentary structures (ripples), erosional landforms (sea cliffs, sea caves, and sea stacks), and sea parting. The Jebudo geosite has considerable value as a new geo-education site with geological and geomorphological distinction from the Gojeongri Dinosaur Egg Fossils and Ueumdo geosites. The Jebudo geosite also has opportunities for geo-education and geo-tourism, such as mudflat experiences and infrastructures, such as coastal trails and viewing points. This geosite can help develop diverse geo-education programs that improve key competencies in the science curriculum, such as critical thinking, inquiry, and problem-solving. Furthermore, by conducting optimized geo-education focused on the characteristics of each geosite, the following can be established: (1) the expansion of learning space from school to geopark, (2) the improvement of understanding of specific content elements and linkage between essential concepts, and (3) the extension of the education scope throughout the earth system. There will be positive impacts on communication, participation, and lifelong learning skills through geopark education.