본 논문에서는 흑백 동영상을 사용하여 얼굴 표정 및 제스처를 실시간으로 인식하는 시스템을 개발하였다. 얼굴 인식분야에서는 형판 정합법과 얼굴의 기하학적 고찰에 의한 사전지식을 바탕으로 한 방법을 혼합하여 사용하였다. 혼합 방법에 의해 입력영상에서 얼굴 부위만을 제한하였으며, 이 영역에 옵티컬 플로우를 적용하여 얼굴 표정을 인식하였다. 제스처 인식에서는 엔트로피를 분석하여 복잡한 배경영상으로부터 손 영역을 분리하는 방법을 제안하였으며 , 이 방법을 개선하여 손동작에 대한 제스처를 인식하였다. 실험 결과, 입력 영상의 배경에 크게 영향을 받지 않고서도 동일 영상에서 움직임이 큰 부위를 검출하여 얼굴의 표정 및 손 제스처를 실시간적으로 인식할 수 있었다.
실시간 영상에서 객체 추적은 수년간 컴퓨터 비전 및 여러 실용적 응용 분야에서 관심을 가지는 주제 중 하나이다. 하지만 배경영상의 잡음을 객체로 인식하는 오류로 인하여 추출하고자 하는 객체를 찾지 못하는 경우가 있다. 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하고 추적하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다. 추출된 객체의 내부점을 이용하여 최소사각영역을 설정하고, 이를 통해 객체를 추적한다. 아울러 제안방법의 성능에 대한 실험결과를 기존 추적알고리즘과 비곤 분석하여 평가한다.
실시간 영상에서 객체 추적은 수년간 컴퓨터 비전 및 여러 실용적 응용 분야에서 관심을 가지는 주제 중 하나이다. 하지만 배경영상의 잡음을 객체로 인식하는 오류로 인하여 추출하고자 하는 객체를 찾지 못하는 경우가 있다. 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다.
실시간 영상에서 객체 추적은 수년간 컴퓨터 비전 및 여러 실용적 응용 분야에서 관심을 가지는 주제 중 하나이다. 하지만 배경영상의 잡음을 객체로 인식하는 오류로 인하여 추출하고자 하는 객체를 찾지 못하는 경우가 있다. 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하고 추적하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다. 추출된 객체의 내부점을 이용하여 최소 사각영역을 설정하고, 이를 통해 객체를 추적한다. 아울러 제안방법의 성능에 대한 실험결과를 기존 추적 알고리즘과 비교, 분석하여 평가한다.
본 논문에서는 실시간 얼굴인증 시스템의 구축을 위한 LVQ 신경망 기반의 새로운 얼굴 인식 방법을 제안한다. 기존의 연구에서 PCA, LDA 변환이 많이 적용되며 신경망을 결합한 형태가 제안되고 있지만 신경망 학습 시간이 오래 걸리는 단점을 가지고 있다. LVQ 신경망은 학습 시간이 짧고 클래스간의 분리도를 최대화할 수 있는 교사학습방법이다. 따라서, 본 논문에서 제안된 방법은 동영상으로부터 실시간으로 입력되는 얼굴영상을 PCA와 LDA변환을 순차적으로 적용하여 부분공간상의 변환된 특징벡터로부터 LVQ 신경망의 학습을 통하여 얼굴을 인식한다. 외부조명의 영향에 강건한 인식시스템을 구축하기 위하여 얼굴검출 단계에서 검출된 얼굴영역은 밝기값의 최대-최소 정규화 방법에 의해 보정된 정규화 영상을 생성한다. 정규화된 얼굴영상은 PCA와 LDA 변환을 통해 부분공간상의 특징벡터로 변환된다. 변환된 훈련 데이터로부터 LVQ 신경망의 초기 중심 벡터를 결정하고 신경망의 학습률 향상을 위해 K-Means 클러스터링 알고리즘을 적용하며, 초기 중심 벡터를 이용하여 LVQ2 학습 방법에 의해 학습된 중심벡터는 클래스의 대표 벡터가 된다. 결국 각 클래스의 대표 벡터로부터 입력 영상의 특징벡터간의 유클리디언 거리 비교법을 적용하여 얼굴 인식을 수행한다. ORL 데이터베이스를 이용한 정지 영상에 대한 인식과 실시간으로 입력되는 영상에 대한 인식 등 두 가지 형태의 영상을 기반으로 실험한 결과 두 경우에 모두 제안된 방법이 기존의 인식 방법보다 인식률에서 우수함을 입증할 수 있었다.
본 논문에서는 실시간 얼굴인식 시스템을 위한 새로운 PCA 기반 LDA 혼합 알고리즘을 제안한다. 크게 얼굴추출 부분과 얼굴인식 부분으로 구성되어 있으며, 얼굴추출 부분에는 차영상, color filtering, 눈과 입의 영역 검출 그리고 정규화 방법을 사용하였고, 얼굴인식 부분에는 추출된 얼굴 후보 영역 영상에 PCA와 LDA를 혼합하여 적용하였다. 기존의 PCA만을 사용한 인식시스템은 낮은 인식률을 보였으며, LDA만을 사용한 인식시스템에서는 학습데이터의 수에 비하여 영상의 화소 개수가 많은 경우 LDA를 입력 영상에 그대로 적용하기 곤란하였다. 이러한 단점을 극복하기 위하여, 정규화 된 영상에 PCA를 적용하여 차원을 축소한 후 LDA를 사용하여 실시간 인식을 가능하게 하였으며, 인식률 또한 향상시킬 수 있었다. 제안한 시스템의 성능을 평가하기 위하여 자체 제작한 DAUface의 데이터베이스를 가지고 실험을 하였다. 실험 결과, 제안된 방법이 PCA 방법과 LDA 방법, 그리고 ICA 방법에 비해 인식률이 상당히 우수함을 알 수 있었다.
본 논문은 연속적인 수화 동영상에 있어서 가장 의미가 있는 손 영역을 검출하는 방법에 대한 연구이다. 부자연스러운 센서 등을 피하고 사용자 친화성과 범용성 및 실시간 구현을 도모하기 위하여 흑백 동영상의 처리가 요구된다. 농아자의 수화를 인식하기 위해 전철로서, 복잡한 배경으로부터 손 영역의 검출은 매우 중요하다. 정확한 손 영역의 검출로 수화 인식률의 개선과 영상처리의 고속화가 가능하다. 제안한 방법은 인접한 프레임간의 차 영상에 대하여 엔트로피를 측정하여 배경영상과 분리를 행한 후, 손 영역에 대한 추적을 수행하였다.
본 논문에서는 중소형 매장에서 판매 상품 진열대를 모니터링할 수 있는 소형 카메라를 이용해 진열 상품에 대한 재고 관리 및 도난 방지 기능을 제공할 수 있는 무인 매장 관리 시스템을 제시한다. 이 시스템은 객체 인식, 실시간 통신, 보안 관리, 출입 관리, 그리고 모바일 인증을 종합적으로 통합한 서비스 솔루션이다. 제안 시스템은 소형 카메라를 통해 실시간으로 촬영되고 있는 영상을 커스텀 YOLOv5-x 모델을 활용하여 진열대의 물체를 인식하고 수량을 실시간 측정하며, 라즈베리파이를 통해 서버와의 실시간 데이터 통신을 지원한다. 또한, 데이터베이스 내 객체 수량과 객체 인식 결과를 비교하여 도난 의심 상황을 탐지하고 도난 발생 시점의 매장 영상을 제공한다. 제안된 무인 매장 솔루션은 중소형 무인 매장 운영의 효율성을 향상시키고 도난을 대응하는데 기여할 수 있을 것으로 기대된다.
동영상의 다중 물체 인식 및 추적은 의료영상이나 무인 주행 시스템 등의 응용분야에서 중요성이 높아지고 있다. 본 논문에서는 스포츠 동영상의 다중 물체를 인식 및 추적하기 위해 칼만필터 알고리즘을 사용한다. 칼만필터 알고리즘을 이용한 물체의 이동 궤적 관리를 통해 표적 겹침 현상에 대한 추적 실패를 극복하도록 하였다. 표적 겹침이 일어나는 동영상을 입력 영상으로 이용하여 제안한 실시간 시뮬레이터의 추적 성능을 분석하였다.
본 논문에서는 미니 드론을 조종하면서 드론에 부착된 카메라가 촬영하는 영상을 실시간으로 받아들여 특정인의 얼굴을 인식하여 확인시켜주는 시스템 개발 방법론을 제안한다. 본 시스템의 개발을 위해서는 OpenCV, Python 관련 라이브러리 및 드론 SDK 등을 사용한다. 실시간 드론 영상으로부터 특정인의 얼굴 인식 비율을 높이기 위해서는 딥러닝 기반의 얼굴 인식 알고리즘을 사용하며 특히 Triples 원리를 활용한다. 시스템의 성능을 확인하기 위해 저자 얼굴을 기준으로 30회 동안 얼굴 인식 실험을 수행한 결과 약 95% 이상의 인식률을 보여주었다. 본 논문의 연구 결과물은 관광지, 축제 행사장 등에서 특정인을 드론으로 빠르게 찾기 위한 목적으로 사용할 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.