• Title/Summary/Keyword: 실시간 데이터 저장

Search Result 801, Processing Time 0.062 seconds

Development of Vehicle Motion Monitoring Module based on Smartphone (스마트폰을 이용한 차량용 주행 모니터링 모듈 개발)

  • Hwang, Jae-Young;Chung, Shin-Il;Chung, Yeon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1903-1909
    • /
    • 2011
  • This paper presents the development of a core module for integrating data from vehicle by the convergence technology of mobile telematics and black-box. This emerging technology can be referred to as Black-box in Mobile (BIM). For the development of BIM, sensors and cameras were realized in a driving robot. Relevant hardware implementation was achieved to verify the functionality of BIM. The transmitted signal from the driving robot was confirmed in an Android-based portable device. Existing Black-boxes were mostly developed by major transportation companies and focused only on storing data. The proposed BIM offers not only data storage but also easy-to-use real-time monitoring while in motion. In addition, the vehicle can be monitored on parking through shock sensors. This development is considered commercially viable as it is achieved via software implementation.

Design and Implementation of a Ubiquitous Health Care System based on Sensor Network (센서네트워크에 기반한 유비쿼터스 헬스케어 시스템의 설계 및 구현)

  • Kim, Jeong-Won
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.143-151
    • /
    • 2008
  • In this paper, we have implemented a ubiquitous healthcare system that can measure and check human's health in anytime and anywhere. The implemented prototype are composed of both front-end and back-end. The front-end have several groups: environment sensor group such as temperature, humidity, photo, voice sensor, health sensor group such as blood pressure, heart beat, electrocardiogram, spo2 sensor, gateway for wired/wireless communication, and RFID reader to identify personal. The back-end has a serial forwarder to propagate measurment results, monitor program, and medical information server The implemented sensor node constructs a sensor network using the Zigbee protocol and is ported the tinyOS. The data gathering base node is linux-based terminal that can transfer a sensed medial data through wireless LAN. And, the medical information server stores the processed medical data and can promptly notify the urgent status to the connected medical team. Through our experiments, we've confirmed the possibility of ubiquitous healthcare system based on sensor network using the Zigbee.

On-board Realtime Orbit Parameter Generator for Geostationary Satellite (정지궤도위성 탑재용 실시간 궤도요소 생성기)

  • Park, Bong-Kyu;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.61-67
    • /
    • 2009
  • This paper proposes an on-board orbit data generation algorithm for geostationary satellites. The concept of the proposed algorithm is as follows. From the ground, the position and velocity deviations with respect to the assumed reference orbit are computed for 48 hours of time duration in 30 minutes interval, and the generated data are up-loaded to the satellite to be stored. From the table, three nearest data sets are selected to compute position and velocity deviation for asked epoch time by applying $2^{nd}$ order polynomial interpolation. The computed position and velocity deviation data are added to reference orbit to recover absolute orbit information. Here, the reference orbit is selected to be ideal geostationary orbit with a zero inclination and zero eccentricity. Thanks to very low computational burden, this algorithm allows us to generate orbit data at 1Hz or even higher. In order to support 48 hours autonomy, maximum 3K byte memory is required as orbit data storage. It is estimated that this additional memory requirement is acceptable for geostationary satellite application.

  • PDF

Design and Implementation of a ubiquitous health care system (유비쿼터스 헬스 케어 시스템의 설계 및 구현)

  • Kim, Jeong-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.921-924
    • /
    • 2007
  • In this paper, we have implemented a ubiquitous healthcare system that can measure and check human's health in anytime and anywhere. The implemented prototype are composed of both front-end and back-end. The front-end have several groups: environment sensor group such as temperature, humidity, photo, voice sensor, health sensor group such as blood pressure, heart beat, electrocardiogram, spo2 sensor, gateway for wired/wireless communication, and RFlD reader to identify personal. The back-end has a serial forwarder to propagate measurment results, monitor program, and medical information server. The implemented sensor node constructs a sensor network using the Zigbee protocol and is ported the TinyOS. The data gathering base node is linux-based terminal that can transfer a sensed medial data through wireless LAN. And, the medical information server stores the processed medical data and can promptly notify the urgent status to the connected medical team. Through our experiments, we've confirmed the possibility of ubiquitous healthcare system based on sensor network using the Zigbee.

  • PDF

Comparison of Search Performance of SQLite3 Database by Linux File Systems (Linux File Systems에 따른 SQLite3 데이터베이스의 검색 성능 비교)

  • Choi, Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Recently, IoT sensors are often used to produce stream data locally and they are provided for edge computing applications. Mass-produced data are stored in the mobile device's database for real-time processing and then synchronized with the server when needed. Many mobile databases are developed to support those applications. They are CloudScape, DB2 Everyplace, ASA, PointBase Mobile, etc, and the most widely used database is SQLite3 on Linux. In this paper, we focused on the performance required for synchronization with the server. The search performance required to retrieve SQLite3 was compared and analyzed according to the type of each Linux file system in which the database is stored. Thus, performance differences were checked for each file system according to various search query types, and criteria for applying the more appropriate Linux file system according to the index use environment and table scan environment were prepared and presented.

Development of Software Education Support System using Learning Analysis Technique (학습분석 기법을 적용한 소프트웨어교육 지원 시스템 개발)

  • Jeon, In-seong;Song, Ki-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.2
    • /
    • pp.157-165
    • /
    • 2020
  • As interest in software education has increased, discussions on teaching, learning, and evaluation method it have also been active. One of the problems of software education teaching method is that the instructor cannot grasp the content of coding in progress in the learner's computer in real time, and therefore, instructors are limited in providing feedback to learners in a timely manner. To overcome this problem, in this study, we developed a software education support system that grasps the real-time learner coding situation under block-based programming environment by applying a learning analysis technique and delivers it to the instructor, and visualizes the data collected during learning through the Hadoop system. The system includes a presentation layer to which teachers and learners access, a business layer to analyze and structure code, and a DB layer to store class information, account information, and learning information. The instructor can set the content to be learned in advance in the software education support system, and compare and analyze the learner's achievement through the computational thinking components rubric, based on the data comparing the stored code with the students' code.

A Design of N-Screen based Monitoring System for Marine-Facility (N-Screen 기반의 해양시설물용 모니터링 시스템 설계)

  • Kim, Ji-Yoon;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.613-622
    • /
    • 2015
  • The convergence of IT technology and marine facilities monitoring system is needed for effective monitoring systems to marine facilities. Especially the spread of smart device such as smart phone, smart pad, smart TV provide an environment that can check the status of the marine facility for marin facilities manager. However, smart phones and smart pads are used in a variety of OS used. Thus the monitoring system of the various service environments is difficult. In addition, There is inconvenience that must individually developed monitoring system for each device. In order to solve this problem NMMS (N-Screen Marine-facility Monitoring System) is proposed. NMMS is consist of Real-time monitoring system, Fault diagnosis system, Data storage system. To improve variety of smart devices accessibility, we use HTML 5. Through NMMS, marine facilities manager can use smart device such as PC, Notebook, smart phone, smart pad for marine facilities monitoring.

Evaluation of Compaction Quality Control applied the Dynamic Cone Penetrometer Test based on IoT (다짐품질관리를 위한 IoT 기반 DCPT 적용 평가)

  • Jisun, Kim;Jinyoung, Kim;Namgyu, Kim;Sungha, Baek;Jinwoo, Cho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • Generally, the plate load test and the field density test are conducted for compaction quality control in earthwork, and then additional analysis. Recently developed that the DCPT (Dynamic Cone Penetration Test) equipment for smart compaction quality control its the system are able to get location and real-time information about worker history management. The IoT-based the DCPT system improved the time-cost in the field compared traditional test, and the functions recording and storage of the DPI (Dynamic Cone Penetration Index) were automated. This paper describes using these DCPT equipment on in-situ and compared to the standards of the DCPT, and the compaction trend had be confirmed with DPI as the field test data. As a result, the DPI of the final compaction decreased by 1.4 times compared to the initial compaction, confirming the increase in the compaction strength of the subgrade compaction layer 10 to 14 cm deep from the surface. A trend of increasing compaction strength was observed. This showed a tendency to increase the compaction strength of the target DPI proposed by MnDOT and the results of the existing plate load test, but there was a difference in the increase rate. Therefore, additional studies are needed on domestic compaction materials and laboratory conditions for target DPI and correlation studies with the plate load tests. If this is reflected, it is suggested that DCPT will be widely used as smart construction equipment in earthworks.

Ubiquitous Healthcare Monitoring System using APG Signals based on Wireless Sensor Network (무선센서네트워크 기반의 가속도 맥파를 이용한 유비쿼터스 헬스케어 모니터링 시스템)

  • Jung, Sang-Joong;Lee, Hoon-Jae;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.813-820
    • /
    • 2009
  • This paper describes the realization of ubiquitous healthcare monitoring system using wearable pulse oximeter based on a wireless sensor network. In order to obtain information of oxygen saturation from a patient, a small size and low power consumption wearable pulse oximeter was designed. Information of oxygen saturation collected by wireless sensor node was transmitted wirelessly to a base-station for storage and display purposes via wireless sensor network. Wireless sensor nodes were programmed by TinyOS application to perform data acquisition and transmission. Lab VIEW server program was designed to monitor information of oxygen saturation and process the measured PPG (photo plethysmogram) signals to APG(Accelerated plethysmogram) signals by appling second order derivatives. PPG signals are simple and cost effective technique to measure blood volume change.

A Smart Brix Measurement System Using Mobile Devices (모바일 장치를 이용한 스마트 과당측정시스템)

  • Jeong, Jin-Kuk;Kim, Jong-Min;Ryu, Gab-Sang
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.217-225
    • /
    • 2017
  • A study proposes possibility of new IoT measuring system blended with a smart device. The research serves the best cultivation information for domestic fruit's enhancement of competitive power and also develops a glucose measuring system by which people manage fructose with the mobile device. The mobile glucose tester is designed with a form of accessory which has high portability and utility because the product connects an existing analogy refractometer to the smart phone. You can check the glucose rates data by commodity, region, and season then save measurement results with server in real time for an exclusive application. It's possible to serve the glucose map, graph, and data list through the web service. This is very useful to do collect, analyze, and process the glucose data.