• 제목/요약/키워드: 실시간 데이터 저장

Search Result 801, Processing Time 0.034 seconds

Implementation of a Component for Visualization of Proximity using IoT Ultrasonic Sensors (IoT 초음파 센서를 이용한 인접거리의 시각화 컴포넌트 구현)

  • Kim, Jun-Young;Kim, Sung-Ki
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1830-1833
    • /
    • 2015
  • 모든 사물이 통신으로 연결되는 사물인터넷(IoT) 시대가 도래 하면서, IoT센서를 통한 데이터 시각화에 대한 요구가 증가 하고 있다. 본 연구에서는 전문적인 지식이 없는 사람도 쉽게 방대한 센서 데이터를 저장, 수집 후 쉽게 데이터 시각화할 수 있는 시스템을 구성 하였다. 본 논문에서는 데이터 시각화를 접근성이 용이한 웹 브라우저에서 구현하였고, 웹 브라우저에서 이를 구현하기 위해서는 웹의 다양한 비표준 플러그인(Flash, SilverLight, ActiveX 등)을 사용해야하는 불편함있다. 이를 개선하기 위해 HTML5, CSS, Javascript를 사용해 플러그인을 설치하지 않고 초음파 센서를 사용한 데이터의 실시간 차트 구현을 하였다. 본연구의 결과는 향후, 초음파 센서데이터를 활용한 전후방 장애물 감지 센서, 도난 경보 시스템, IoT센서 데이터 시각화 서비스 등에 활용 될 것으로 기대된다.

Compression Methods for Time Series Data using Discrete Cosine Transform with Varying Sample Size (가변 샘플 크기의 이산 코사인 변환을 활용한 시계열 데이터 압축 기법)

  • Moon, Byeongsun;Choi, Myungwhan
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.5
    • /
    • pp.201-208
    • /
    • 2016
  • Collection and storing of multiple time series data in real time requires large memory space. To solve this problem, the usage of varying sample size is proposed in the compression scheme using discrete cosine transform technique. Time series data set has characteristics such that a higher compression ratio can be achieved with smaller amount of value changes and lower frequency of the value changes. The coefficient of variation and the variability of the differences between adjacent data elements (VDAD) are presumed to be very good measures to represent the characteristics of the time series data and used as key parameters to determine the varying sample size. Test results showed that both VDAD-based and the coefficient of variation-based scheme generate excellent compression ratios. However, the former scheme uses much simpler sample size decision mechanism and results in better compression performance than the latter scheme.

Real-time optimal pump operation model development (경제적인 용수공급을 위한 실시간 송수펌프의 최적운영 모형 개발)

  • Kim, Kang Min;Choi, Jeong Wook;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.185-185
    • /
    • 2016
  • 일반적인 송 배수시스템의 운영은 지대가 높은 곳에 위치한 배수지(tank)에 용수를 저장한 후, 자연유하에 의해 수요절점으로 용수를 공급한다. 이때 배수지에 용수를 송수하기 위한 펌프장 운영에서 많은 전기에너지가 소모된다. 일반적으로 송수펌프의 운영은 다년간의 운영자료를 기반으로 운영자의 판단에 의해 이루어지거나, SCADA(Supervisory Control and Data Acquisition)시스템을 통해 관측되는 배수지 수위를 기준으로 펌프 작동여부를 결정하고 있다. 본 연구에서는 이러한 기존 펌프운영방법을 개선하고 좀 더 효율적인 운영방법을 모색하기 위해 실시간 송수펌프 최적운영 모형을 개발하였다. 최적화 기법으로는 유전자 알고리즘(genetic algorithm)을 사용하였으며, 다양한 제약조건(operational constraints)을 적용하고 급수지역의 24시간 용수사용량을 미리 예측하여 실제 시스템의 운영형태와 근접하게 반영하였다. 또한 최적화 과정에서 상수관망해석 프로그램(EPANET)을 연계하여 수요절점의 수압조건 및 시스템의 운영상황을 모의하였다. 개발된 모형을 국내 P시의 광역상수도 시스템에 실제 적용하였으며, 현장 실시간 운영 데이터를 입수하여 전력사용량, 배수지수위, 이산화탄소 발생량 등을 비교, 분석하였다. 개발 모형을 이용하여 펌프운영을 실시하였을 경우, 기존의 운영방식과 비교하여 경제적/환경적으로 뚜렷한 개선 효과를 확인할 수 있었다.

  • PDF

Development of RAW Data Storage Equipment for Operation Algorithm research of the Millimeter Wave Tracking Radar (밀리미터파 추적레이더 운용 알고리듬 연구를 위한 RAW 데이터 저장 장비 개발)

  • Choi, Jinkyu;Na, Kyoung-Il;Shin, Youngcheol;Hong, Soonil;Kim, Younjin;Kim, Hongrak;Joo, Jihan;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.57-62
    • /
    • 2022
  • Recently, the tracking radar continues research to develop a new operation algorithm that can acquire and track a target in various environments. In general, modeling similar to the real target and environment is used to develop a new operation algorithm, but there is a limit to modeling the real environment. In this paper, a RAW data storage device was developed to efficiently develop a new operation algorithm required for the tracking radar using millimeter wave to acquire and track the target. The RAW data storage equipment is designed so that the signal processing device of the tracking radar using millimeter wave can save the RAW data output from 8 channels to OOOMSPS. RAW data storage equipment consists of data acquisition equipment and data storage equipment. The data acquisition equipment was implemented using a commercial Xilinx KCU 105 Evaluation KIT capable of high-speed data communication interface, and the data storage equipment was implemented by applying a computer compatible with the commercial Xilinx KCU 105 Evaluation KIT. In this paper, the performance of the implemented RAW data storage equipment was verified through repeated interlocking tests with the signal processing device of the millimeter wave tracking radar.

Internet Mornitoring with Wind-Photovoltaic Power Hybrid System (풍력-태양광 복합발전 시스템의 인터넷 모니터링)

  • Yang, Si-Chang;Moon, Chae-Joo;Chang, Young-Hak;Lim, Jung-Min;Kim, Eui-Sun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.305-308
    • /
    • 2005
  • 풍력 및 태양에너지는 기존의 화력, 수력, 원자력 발전 등을 대신할 친환경적이고 공해가 없으며 양적으로도 무한한 대체 에너지원이다. 계절적인 기상변화 특성을 이용하여 풍력 발전 시스템과 태양광발전 시스템을 상호 보완시킴으로써 안정적인 전력 공급과 에너지이용 효율의 향상을 꾀할 수 있는 풍력-태양광 복합발전 시스템에 대한 관심이 고조되고 있다. 본 연구에서는 이러한 복합 발전 시스템을 효율적이고 안정적으로 운용하기 위하여 시스템의 각종 데이터들을 수집, 분석하고 파일로 저장하며 이를 인터넷을 이용하여 원격에서도 모니터링 할 수 있는 시스템을 구축한다. 여러 가지 교류와 직류의 전압, 전류들을 비롯한 풍속, 조도, 온도 등의 물리량을 측정하기 위하여 여러 형태의 변환기를 사용하였고 신호 조절 회로를 구성하였다. 데이터 수집 보드(DAQ)를 이용하여 컴퓨터로 데이터들을 읽어 들였으며, 시스템 운용을 위한 서버 프로그램과 이를 원격지에서 실시간 모니터링 및 저장된 데이터들을 다운로드 할 수 있는 클라이언트 프로그램을 작성하였다. 측정된 데이터를 시간, 기상 등의 여러 조건과 연관하여 분석하였다.

  • PDF

Implementation of product recommendation system through mashup of weather information and peripheral information (기상정보와 주변 정보의 매시업을 통한 상품추천시스템 구현)

  • Lee, Ju-Eun;Kim, You-Jin;Kim, Chae-Yeon;Lee, Eun-Sol;Jang, Jae Suk;Kim, Sung-Jin;Choi, Jae-Hong;Lee, Jun-Dong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.153-155
    • /
    • 2019
  • 본 논문에서는 다양한 아두이노 무선센서 모듈과 Raspberry Pi, 웹서버를 이용한 IOT 기반 환경정보 수집시스템과 기상청 API를 통한 기상정보, 상점 서비스를 매시업하여 상품추천시스템을 구현하였다. 이 시스템은 사용자가 주변 환경의 데이터를 정확하게 확인하고 그에 맞는 상품을 추천받을 수 있도록 한다. 상품추천시스템에서는 상점 외부에 부착된 환경정보 수집시스템에서 측정한 데이터와 기상청 API 데이터를 DB에 저장하고 DB에 저장된 데이터를 이용하여 상황에 맞는 기후화면디자인과 환경정보 데이터를 html로 구성하여 보여준다. Raspverry Pi에 연결된 모니터를 통해 실시간으로 정보를 보여주며 일정 시간 간격으로 관련 상품 광고를 보여주며 필요한 물건을 추천해준다.

  • PDF

The Development of Protocol for Construction of Smart Factory (스마트 팩토리 구축을 위한 프로토콜 개발)

  • Lee, Yong-Min;Lee, Won-Bog;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1096-1099
    • /
    • 2019
  • In this paper, we propose the protocol for construction of smart factory. The proposed protocol for construction of smart factory consists of an OPC UA Server/Client, a technology of TSN realtime communication, a NTP & PTP time synchronization protocol, a FieldBus protocol and conversion module, a technology of saving data for data transmit latency and synchronization protocol. OPC UA server/client is a system integration protocol which makes interface industrial hardware device and supports standardization which allows in all around area and also in not independent from any platform. A technology of TSN realtime communication provides an high sensitive time management and control technology in a way of sharing specific time between devices in the field of high speed network. NTP & PTP time synchronization protocol supports IEEE1588 standardization. A fieldbus protocol and conversion module provide an extendable connectivity by converting industrial protocol to OPC. A technology of saving data for data transmit latency and synchronization protocol provide a resolution function for a loss and latency of data. Results from testing agencies to assess the performance of proposed protocol for construction of smart factory, response time was 0.1367ms, synchronization time was 0.404ms, quantity of concurrent access was 100ea, quantity of interacting protocol was 5ea, data saving and synchronization was 1,000 nodes. It produced the same result as the world's highest level.

Implementation of the Integrated Monitoring System for Improvement of Production Environment (생산환경 개선을 위한 통합 모니터링 시스템 구현)

  • Yoon, Jae-Hyeon;Jang, Sang-Gil;Jung, Jong-Mun;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.481-486
    • /
    • 2019
  • Smart Factory requires real-time monitoring and analysis of all process processes for optimal production environment. Monitoring system for data collection from various sensors is necessary to make all production processes automatic. By storing and analyzing the collected data, we can check whether there are any signs of abnormalities in any machine or equipment. Thus, in this paper, an integrated monitoring system for smart factory incorporating a working environment monitoring system and an automatic storage system of measurement values was implemented. By using the automatic storage system of measurement values, it is possible to carry out reliable inspection in any place without misentry. Also, through working environment monitoring system using LoRa, production environments such as temperature, humidity and atmospheric pressure can be monitored in real time.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.

A Small Real-Time Radio Broadcasting System by Using Smart Phone (스마트폰을 이용한 소규모 실시간 라디오 방송 시스템)

  • Lee, Jae-Moon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.83-90
    • /
    • 2012
  • This paper is a research on the design and implementation of a small real-time radio broadcasting system by using smart phone based on Android. It was designed as the server-client structure, and used the progressive download of HTTP as methods of transferring data to further simplify the system. In order to realize the real-time broadcasting, the original audio source was divided with a short interval and captured to be compressed and stored into files. Then the client receives and plays the compressed files sequentially as it is downloaded. However, this method occurs two problems each of which is the loss of capturing the original source in the server and the discontinuity of playing the files in the client. We solved the problem in the server by separating the thread into two parallel threads of which is each captured and compressed/stored, also by using the double buffering method. The problem in the client was solved using MediaPlayer in Android and the file queue to store the multiple files.