절삭공정의 자동화의 무인화를 달성하기 위해서는 경험을 가진 작업자의 역활이 컴퓨터에 의한 자동적인 감시 및 제어시스템으로 대체되어야 한다. 특히 공작기계에서 발생할 수 있는 자체의 고장이나 절삭과정중에 발생하는 이상상태를 실시간으로 검출하여 원인을 자동적으로 진달 할 수 있어야 한다. 절삭가공 공작기계의 이상상태 감시 및 진단의 현황을 살펴보면 주로 공구상태의 감시와 채터 감시가 연구의 대상 이 되고 있다. 공구상태의 감시는 공구의 마모와 파단을 검출하고 있다. 이 중에서 공구의 파단은 발생 즉시 실시간으로 감시되어야 한다. 밀링작업에서는 1회전 이내의 공구회전에 파단을 검출하고 기계를 정지시켜야 한다. 최근의 절삭가공에서는 절삭공구로 강력절삭을 위해 고경도 재료를 사용함에 따라 공구의 파단이 빈번하게 발생하고 있다. 정면밀링과 같은 단속절상에서는 절삭날이 큰 충격을 받으므로 더욱 파단에 대한 감시가 필요하다.
제안된 동판 표면 검사 시스템은 PC-기반으로 다중 스레드 기법과 다중 CPU를 이용해 동판 표면의 결함을 실시간으로 검사하는 시스템이다. 초고속 라인 스캔 카메라로 영상 취득 보드에 영상을 실시간으로 취득하여 처리할 때, 더블 버퍼링 방법으로 입출력과 처리가 동시에 수행되어 처리 속도를 높인다. 다중 스레드 기법에서는 시스템 자원 활용과 다중 스레드로 CPU의 사용을 최대화하여 실시간 처리하며, 다중 스레드 구조로도 실시간 처리가 어려운 경우에는 다중 CPU를 사용하여 이를 해결한다. 또한 동판 표면 영상에서 결함 검출하여 분류할 때, 실시간 처리를 만족시키기 위해서 결함영상의 공분산 행렬의 고유치 비율, 명암차 등의 연산으로 분류할 수 있는 방법을 제시한다. 결함의 검출은 조명 불균형에 대한 보상 처리가 적용된 다음 임계치에 의해 검출된다. 검출된 결함은 제안된 분류 방법으로 특징을 분석한 뒤 결함의 형태를 분류한다. 특징은 결함 너비와 고유치 비율, 명암차 등이 사용되었다. 제시된 방법을 검증하기 위해서 총 141개의 결함을 분류하는 실험이 진행되었고, 결과로는 89.4% 성공률을 보였다.
본 논문에서는 야구 동영상에서 실시간으로 중요 이벤트 장면을 검출하는 알고리즘을 제안한다. 제안하는 알고리즘은 영상정보를 분석하여 Pitching 신과 Close Up 신을 추출하여 Play 구간을 검출하고, 오디오 정보를 분석하여 오디오 이벤트 구간을 검출한다. Play 구간의시작인 Pitching 신을 검출하기 위해서는 오프라인 모델과 온라인 모델을 혼용하여 다양한 환경에 상관없이 높은 성능을 보일 수 있도록 하였으며, 아나운서의 억양 및 관중의 함성의 고조도가 높아지는 구간을 기반으로 검출된 오디오 이벤트 구간을 영상 정보 분석을 통해 획득된 Play 장면구간을 결합하여 중요 이벤트 장면 검출의 정확도를 높일 수 있도록 하였다. 실험에 의하면 제안하는 알고리즘은 1초의 동영상 데이터를 처리하는데 0.024초의 소요 시간이 필요하고, 0.89의 Recall과 0.975의 Precision 검출 성능을 보임을 알 수 있었다.
최근 제품의 품질 향상과 생산력 제고를 위해 제조업 분야에서의 결함 검출 시스템의 자동화에 대한 필요성이 커지고 있다. 또한 많은 회사들이 자동 흠 검출 시스템을 도입하여 판재나 모직 등의 흠 검출에 사용하고 있다. 그러나 철강 제조업에서 선재의 흠 검출은 이전에 많이 시도된바 있는 판재 등의 흠 검출보다 극복해야할 과제가 많다. 우선 선재의 특성상 조명이 일정하더라도 각 부분의 밝기가 다르고, 선재가 이동하거나 선재의 굵기가 달라지면 카메라에서 관측되는 부위의 밝기가 달라진다. 따라서 선재의 흠 검출 시스템에서는 이들의 영향을 극복하고 제품의 결함을 판별할 수 있는 알고리즘이 요구된다. 또한 선재의 이동속도는 최고 18m/s에 이르기 때문에 실시간으로 흠을 검출하기 위해서는 알고리즘이 간단하고 효율적이어야 한다. 본 논문에서는 이러한 문제를 극복하고 선재의 흠을 자동 검출하기 위한 알고리즘을 제시한다.
본 논문에서는 동영상에서 에지 정보와 히스토그램 분석을 이용하여 실시간으로 움직이는 물체를 검출하고 추적하는 방법을 제안하였다. 물체 검출에서는 먼저, 입력영상에 대하여 형태에 관한 정보를 그대로 유지하면서 자료의 양을 줄일 수 있는 에지(Edge)를 추출한다. 추출된 에지 영상에 차연산과 이진화를 수행하여 물체를 검출하고, 검출된 물체 영역은 이진 변환밀도에 대한 수평 누적값의 합을 수평 수직 최대 누적값을 더한 값으로 나눈 임계값으로 구한다. 물체 추적에서는 현재 프레임에서 검출된 물체와 이전 프레임에서 검출된 물체와의 유사성을 비교하여 추적한다. 실험결과 물체 검출속도를 개선시켰고, 실시간으로 물체를 추적할 수 있었으며, 국부적인 움직임까지도 추적할 수 있었다.
컴퓨터 비전을 이용한 이진 영상 데이터 처리는 사용자가 원하는 객체를 배경과 분리하여 추출하는 데에 유용하며 객체 위치 검출에는 테두리 검출(edge detection), 센트로이드 검출 (centroid detection) 등 다양한 기법들이 사용되어 왔다. 연속해서 움직이는 객체의 위치를 테두리 검출 기법을 이용하여 추종 시, 조명과 환경 잡음에 민감한 영상 데이터의 특성상 객체의 테두리 부분은 매 프레임마다 조금씩 차이가 있어 위치를 검출하는 데에 오차가 발생하기 쉽다. 그러나 센트로이드 기법으로 구할 경우 많은 픽셀의 무게중심을 구하는 것이므로 그 오차를 줄여 빠르고 정확한 위치 검출에 유용하다. 본 논문에서는 LabVIEW를 이용하여 진자운동 하는 물체의 센트로이드 점을 구하여 실시간 위치 검출을 구현한다.
사생활 보호에 대한 인식이 커지고, 인터넷 시대에 접어들면서 네트워크 기반의 보안시스템의 개발이 활발하다. 실시간 비디오 카메라를 통한 움직이는 물체를 검출하기 위해서는 불필요한 잡음이나 조명의 변화에 대처해야 한다. 이러한 많은 요소들을 고려하여 움직이는 물체를 검출하려면 많은 계산 복잡도를 가지게 된다. 또한, 카메라의 영상크기가 증가함에 따라 움직이는 물체를 검출하기 위해서 더 많은 계산 복잡도를 가지게 된다. 본 논문에서는 기존의 통상적인 움직임 검출방법 과 적응적 배경방식인 '물체 검출을 위한 동적인 장면의 베이시안 모델링 기반 물체 검출 방법'을 분석하고, 실시간으로 처리되는 동적 비디오 영상에서 이동 물체를 검출하는 과정에서의 영상의 크기가 커지고, 이동하는 물체의 개수가 많아짐에 따라 발생되는 계산의 복잡도를 'CPU 성능과 영상 resize 를 이용한 계산 복잡도 감소 방법'을 통해 초당 프레임 처리속도를 유지시키는 방법을 제시한다.
본 논문에서는 실시간으로 입력되는 비디오 영상으로부터 사용자의 얼굴 방향을 효율적으로 추정하는 새로운 방법을 제안하였다. 이를 위하여 입력 영상으로부터 외부조명의 변화에 덜 민감한 Haar-like 특성을 이용하여 얼굴영역의 검출을 수행하고 검출 된 얼굴영역 내에서 양쪽 눈, 코, 입 등의 주요 특성을 검출한다. 이 후 실시간으로 매 프레임마다 광류를 이용해 검출된 특징 점을 추적하게 되며, 추적된 특징 점을 이용해 얼굴의 방향성 추정한다. 일반적으로 광류를 이용한 특징 추적에서 발생할 수 있는 특징점의 좌표가 유실되어 잘못된 특징점을 추적하게 되는 상황을 방지하기 위하여 검출된 특징점의 템플릿 매칭(template matching)을 사용해 추적중인 특징점의 유효성을 실시간 판단하고, 그 결과에 따라 얼굴 특징 점들을 다시 검출하거나, 추적을 지속하여 얼굴의 방향성을 추정을 가능하게 한다. 탬플릿 매칭은 특징검출 단계에서 추출된 좌우 눈, 코끝 그리고 입의 위치 등 4가지 정보를 저장한 후 얼굴포즈 측정에 있어 광류에의해 추적중인 해당 특징점들 간의 유사도를 비교하여 유사도가 임계치를 벗어 날 경우 새로이 특징점을 찾아내는 작업을 수행하여 정보를 갱신한다. 제안된 방법을 통해 얼굴의 특성 추출을 위한 특성 검출과정과 검출된 특징을 지속적으로 보완하는 추적과정을 자동적으로 상호 결합하여 안정적으로 실시간에 얼굴 방향성 추정 할 수 있었다. 실험을 통하여 제안된 방법이 효과적으로 얼굴의 포즈를 측정할 수 있음을 입증하였다.
소실점이란 실제 공간의 평행한 선들이 영상 내에 투영되면서 한곳에 모이는 점이다. 본 논문에서는 이러한 소실점의 특성을 이용한 실시간 소실점 검출 알고리즘을 제안한다. 기존의 소실점 검출 방법은 1) 복잡한 계산이 요구되거나 2) 알고리즘에 따라 소실점을 검출할 수 있는 영상이 제한되어 있다. 제안하는 방법은 블록 기반의 HOG(Histogram of Oriented Gradient)를 구하여 영상의 구조적 특성을 이용하는 것으로 영상 내에 존재하는 소실점을 실시간으로 검출한다. 먼저 영상의 블록 단위로 HOG 기술자를 구한 뒤, 제안하는 동적 프로그래밍(dynamic programing)을 이용하여 소실점의 위치를 예측한다. 본 논문에서는 다양한 영상에 대한 실험을 통해 제안하는 알고리즘이 효율적인 소실점 검출 방법임을 보이고자 한다.
본 논문에서는 다양한 잡음 환경에서 음성의 통계적 모델에 기반한 음성 검출기의 성능향상을 위해 PSFM (Power Spectral Flatness Measure)을 이용하여 실시간으로 변별적 가중치 학습 (Discriminative Weight Training) 기반의 최적화된 우도비 테스트 (Likelihood Ratio Test, LRT)를 제안한다. 먼저, 기존의 통계모델기반의 음성 검출기를 분석하고, 이를 기반으로 MCE (Minimum Classification Error)방법을 도입하여 도출한 각 주파수 채널별 가중치를 PSFM 값에 기반하여 실시간 매 프레임마다 다른 가중치를 적용한 우도비 기반의 음성 검출 결정법을 제시한다. 제안된 알고리즘은 다양한 잡음 환경에서 기존에 제시된 음성 검출기와 비교하였으며, 우수한 성능을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.