• Title/Summary/Keyword: 실시간 객체추적

Search Result 275, Processing Time 0.03 seconds

Improved Object Tracking using Surrounding Information Detection and Bilateral Symmetry Averaging (주변정보 검출과 대칭평균화를 통한 개선된 객체추적 기법)

  • Cho, Chi-Young
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.51-52
    • /
    • 2015
  • 동영상에서의 객체추적을 위해 주파수변환을 적용하는 연구가 발표되고 있다. 주파수영역으로의 변환 방법은 FFT와 같은 고속변환을 적용하므로 실시간 객체 추적을 위해 좋은 방법이다. 동영상에서 이동 중인 객체는 인접 프레임에서 위치의 변화가 크지 않기 때문에 주파수영역으로의 변환 방법으로 고속 객체 탐색을 실현할 수 있다. 그러나 동영상에서 이동중인 객체는 형상이 조금씩 변할 수 있으므로 탐색기법은 이 점을 고려해야한다. 본 논문에서는 추적 대상 객체가 다른 물체에 의해 가려지는 상황에 따라 필터갱신을 적응적으로 수행하고 이동경로와 주변정보를 사용하고 검출 객체에 비례대칭평균화 전처리를 적용함으로써 추적 대상객체가 가려지는 상황에서도 추적 실패를 줄일 수 있는 객체 탐색 기법을 제안한다.

  • PDF

Multi-mode Kernel Weight-based Object Tracking (멀티모드 커널 가중치 기반 객체 추적)

  • Kim, Eun-Sub;Kim, Yong-Goo;Choi, Yoo-Joo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.4
    • /
    • pp.11-17
    • /
    • 2015
  • As the needs of real-time visual object tracking are increasing in various kinds of application fields such as surveillance, entertainment, etc., kernel-based mean-shift tracking has received more interests. One of major issues in kernel-based mean-shift tracking is to be robust under partial or full occlusion status. This paper presents a real-time mean-shift tracking which is robust in partial occlusion by applying multi-mode local kernel weight. In the proposed method, a kernel is divided into multiple sub-kernels and each sub-kernel has a kernel weight to be determined according to the location of the sub-kernel. The experimental results show that the proposed method is more stable than the previous methods with multi-mode kernels in partial occlusion circumstance.

Tracking of Single Moving Object based on Motion Estimation (움직임 추정에 기반한 단일 이동객체 추적)

  • Oh Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.349-354
    • /
    • 2005
  • The study on computer vision is aimed on creating a system to substitute the ability of human visual sensor. Especially, moving object tracking system is becoming an important area of study. In this study, we have proposed the tracking system of single moving object based on motion estimation. The tracking system performed motion estimation using differential image, and then tracked the moving object by controlling Pan/Tilt device of camera. Proposed tracking system is devided into image acquisition and preprocessing phase, motion estimation phase and object tracking phase. As a result of experiment, motion of moving object can be estimated. The result of tracking, object was not lost and tracked correctly.

  • PDF

Towards Real-time Multi-object Tracking in CPU Environment (CPU 환경에서의 실시간 동작을 위한 딥러닝 기반 다중 객체 추적 시스템)

  • Kim, Kyung Hun;Heo, Jun Ho;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.192-199
    • /
    • 2020
  • Recently, the utilization of the object tracking algorithm based on the deep learning model is increasing. A system for tracking multiple objects in an image is typically composed of a chain form of an object detection algorithm and an object tracking algorithm. However, chain-type systems composed of several modules require a high performance computing environment and have limitations in their application to actual applications. In this paper, we propose a method that enables real-time operation in low-performance computing environment by adjusting the computational process of object detection module in the object detection-tracking chain type system.

Stereo Images-Based Real-time Object Tracking Using Active Feature Model (능동 특징점 모델을 이용한 스테레오 영상 기반의 실시간 객체 추적)

  • Park, Min-Gyu;Jang, Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.109-116
    • /
    • 2009
  • In this thesis, an object tracking method based on the active feature model and the optical flow in stereo images is proposed. We acquired the translation information of object of interest and the features of object by utilizing the geometric information and depth of stereo images. Tracking performance is improved for the occlude object with this information by predicting the movement information of features of the occlude object. Rigid and non-rigid objects are experimented. From the result of experiment, the OOI can be real-time tracked from complicate back ground. Besides, we got the improved result of object tracking in any occlusion state, no matter what it is rigid or non-rigid object.

Real-Time Object Tracking Algorithm based on Minimal Contour in Surveillance Networks (서베일런스 네트워크에서 최소 윤곽을 기초로 하는 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.337-343
    • /
    • 2014
  • This paper proposes a minimal contour tracking algorithm that reduces transmission of data for tracking mobile objects in surveillance networks in terms of detection and communication load. This algorithm perform detection for object tracking and when it transmit image data to server from camera, it minimized communication load by reducing quantity of transmission data. This algorithm use minimal tracking area based on the kinematics of the object. The modeling of object's kinematics allows for pruning out part of the tracking area that cannot be mechanically visited by the mobile object within scheduled time. In applications to detect an object in real time,when transmitting a large amount of image data it is possible to reduce the transmission load.

Real-Time Face Tracking System Of Object Segmentation Tracking Method Applied To Motion and Color Information (움직임과 색상정보에서 객체 분할 추적 기법을 적용한 실시간 얼굴 추적 시스템)

  • Choi, Young-Kwan;Cho, Sung-Min;Choi, Chul;Hwang, Hoon;Park, Chang-Choon
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.669-672
    • /
    • 2002
  • 최근 멀티미디어 기술의 급속한 발달로 인해 개인의 신원 확인, 보안 시스템 등의 영역에서 얼굴과 관련된 연구가 활발히 진행 되고 있다. 기존의 연구에서는 원거리 추적이 어려우며, 연산시간, 잡음(noise), 배경과 조명등에 따라 추적 효율이 낮은 단점을 가지고 있다. 본 논문에서는 빠르고 정확한 얼굴 추적을 위한 차 영상 기법(differential image method)을 이용한 분할영역(segmentation region)에서 움직임(motion)과 피부색(skin color) 특성 기반의 객체분할추적(Tracking Of Object segmentation) 방법을 이용하였다. 객체분할추적은 얼굴을 하나의 객체(object)로 인식하고 제안한 방법으로 얼굴 부분만 분할하는 단계와 얼굴특징추출 단계를 적용하여 피부색 기반의 연구에서 나타난 입력영상(Current Frame)에서의 유동적인 피부색의 노출 대한 얼굴 추적 연구의 문제점을 해결했다. 시스템은 현재 컴퓨터에 일반적으로 사용되는 카메라를 이용하여 구현 하였고, 실시간(real-time) 영상에서 비교적 성공적인 얼굴 추적을 하였다[4].

  • PDF

Active Object Tracking based on stepwise application of Region and Color Information (지역정보와 색 정보의 단계적 적용에 의한 능동 객체 추적)

  • Jeong, Joon-Yong;Lee, Kyu-Won
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.107-112
    • /
    • 2012
  • An active object tracking algorithm using Pan and Tilt camera based in the stepwise application of region and color information from realtime image sequences is proposed. To reduce environment noises in input sequences, Gaussian filtering is performed first. An image is divided into background and objects by using the adaptive Gaussian mixture model. Once the target object is detected, an initial search window close to an object region is set up and color information is extracted from the region. We track moving objects in realtime by using the CAMShift algorithm which enables to trace objects in active camera with the color information. The proper tracking is accomplished by controlling the amount of pan and tilt to be placed the center position of object into the middle of field of view. The experimental results show that the proposed method is more effective than the hand-operated window method.

Real-time People Counting System Using Multiple Depth Cameras (다중 심도 카메라를 이용한 실시간 피플 카운팅 시스템)

  • Lee, YongSub;Moon, Namee
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.652-654
    • /
    • 2012
  • 본 논문에서는 다중 심도 카메라 기반의 실시간 피플 카운팅 시스템을 제안 한다. 카메라 영상으로부터 사람을 감지하고 추적하는 시스템 및 그 방법에 관한 것으로, 피플 카운팅 시스템은 쇼핑몰이나 대형건물의 출입구 등과 같은 다양한 환경에 적용될 수 있다. 기존 피플 카운팅 시스템에서의 급격한 조명의 변화나 겹침 현상, 가림 현상에 대한 해결 방법으로, 다중 심도 카메라 환경에서 동일 객체 추적을 위해 RLM(Range Laser Method)를 적용하고, 조명 등 환경 변화에 강인한 배경 제거 및 물체 검출 기법으로 가우시안 혼합 모델(Gaussian Mixture Model)을 적용해 객체인식에 대한 정확도를 높인다. 또한, 객체를 블랍(Blob)으로 지정해 확장 칼만 필터(Extended Kalman Filter, EKF) 방법으로 객체를 추적한다. 본 제안은 피플 카운팅 시스템에의 객체 검출 및 인식에 대한 정확도를 향상시킬 수 있으리라 기대된다.

Extracting and Tracing a Specified Object among Multiple Ones (다중객체 환경에서 특정객체의 추출 및 추적에 관한 연구)

  • Kim, Eun-Hwan;Han, Dan-Song;Lee, Kwang-Hyoung;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.100-107
    • /
    • 2008
  • This paper proposes a real-time processing method to simplify the image input procedure while extracting and tracing a specified object among multiple ones. In order to extract an object in a specified area among multiple objects of indoor environment and tracing the extracted object continuously, it is verified through experiments that the information interchanged between cameras upwards and in front of it have effect on tracing a specified object continuously. The camera located upward transfers its x-axis data of the input image to the front camera so that the front camera can catch the area of object soon without computing the information of x-axis. The front camera can't resolve the problem of objects overlapping till they share information with the upward camera. The result of the experiment shows that the computation for tracing an object is simplified and the accuracy for extracting and tracing is upgraded.