• Title/Summary/Keyword: 실배관

Search Result 76, Processing Time 0.031 seconds

Development of TDR-based Water Leak Detection Sensor for Seawater Pipeline of Ship (시간영역반사계를 이용한 해수배관시스템의 누수 탐지용 센서 개발 연구)

  • Hwang, Hyun-Kyu;Shin, Dong-Ho;Kim, Heon-Hui;Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1044-1053
    • /
    • 2022
  • Time domain reflectometry (TDR) is a diagnostic technique to evaluate the physical integrity of cable and finds application in leak detection and localization of piping system. In this study, a cable-shaped leak detection sensor was proposed using the TDR technique for monitoring leakage detection of ship's engine room seawater piping system. The cable sensor was developed using a twisted pair arrangement and wound by an absorbent material. The availability and performance of the sensor for leak detection and localization were evaluated on a lab-scale pipeline set up. The developed sensor was installed onto the pipes and flanges of the lab-scale set up and various TDR waveforms were acquired and analyzed according to the dif erent variables including the number of twists and sheath thickness. The result indicated that the twisted cable sensor was able to produce clear and smooth signal as compared to the TDR sensor with a parallel arrangement. The optimal number of twist was determined to be above 10 per the unit length. The optimal diameter of sheath thickness that results in the desired sensitivity was determined to be ranging from 80% up to 120% of the diameter of the conductor. The linear regression analysis for estimation of leak localization was carried out to estimate the location of the leakage, and the result was a determination coefficient of 0.9998, indicating a positive relationship with the actual leakage point. The proposed TDR based leak detection method appears to be an effective method for monitoring leakage of ship's seawater piping system.

Design Point Operating Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 설계점 운영 특성)

  • Moon, Ilyoon;Moon, Insang;Kang, Sang Hun;Ha, Seong-Up;Lee, Soo Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.81-88
    • /
    • 2013
  • It was designed and tested at the design point that an oxidizer rich preburner for a staged combustion liquid rocket engine propelled by kerosene and LOx. The oxidizer rich preburner was designed as some of LOx injected from the mixing head was burned with kerosene and the rest of LOx injected from injection holes in the regenerative cooling chamber was vaporized by combustion gas. The preburner is operated at OF ratio of 60 and combustion pressure of 20 MPa. The Preburner has a honey-comb type mixing head with simplex swirl injectors, a turbulence ring improving combustion stability and uniformity of product gas temperature distribution, and a nozzle simulating the duct. With the combustion test results at the design point, the oxidizer rich preburner showed high combustion stability and uniformity of product gas temperature distribution.

Suggestion of a Evaluation Method for Variation of Concrete Workability According to Pumping Condition through Lab-Scale Test (펌핑 조건에 따른 콘크리트 작업성 변화 실내 평가 방법 제안)

  • Lee, Jung-Soo;Jang, Kyong-Pil;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.413-420
    • /
    • 2020
  • In this study, a new lab-scale test equipment was developed to evaluate the variation of concrete workability after pumping. The equipment was designed to simulate the pressure and shearing applied to concrete during actual pumping. In order to examine the feasibility of evaluating variation of concrete workability through lab-scale test equipment, real-scale pumping tests and lab-scale tests were performed together. The design strength of concrete used in the both tests was 24, 35, and 60MPa, and the length of pipe used in pumping tests was 130, 304, and 518m. The lab-scale tests were performed in consideration of actual pumping conditions(pressure, shearing, and pumping duration time). The workability(slump or slum flow) of concrete was measured before test, after the pumping test, and after lab-scale test. In all tests, workability of all concrete mixtures decreased. In addition, the results of both tests were measured greatly similarly.

A Numerical Study on Improvement in Seismic Performance of Nuclear Components by Applying Dynamic Absorber (동흡진기 적용을 통한 원전기기의 내진성능향상에 관한 수치적 연구)

  • Kwag, Shinyoung;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • In this paper, we study the applicability of Tuned Mass Damper(TMD) to improve seismic performance of piping system under earthquake loading. For this purpose, a mode analysis of the target pipeline is performed, and TMD installation locations are selected as important modes with relatively large mass participation ratio in each direction. In order to design the TMD at selected positions, each corresponding mode is replaced with a SDOF damped model, and accordingly the corresponding pipeline is converted into a 2-DOF system by considering the TMD as a SDOF damped model. Then, optimal design values of the TMD, which can minimize the dynamic amplification factor of the transformed 2-DOF system, are derived through GA optimization method. The proposed TMD design values are applied to the pipeline numerical model to analyze seismic performance with and without TMD installation. As a result of numerical analyses, it is confirmed that the directional acceleration responses, the maximum normal stresses and directional reaction forces of the pipeline system are reduced, quite a lot. The results of this study are expected to be used as basic information with respect to the improvement of the seismic performance of the piping system in the future.

Prediction Method of Control Valve Noise (잔향실을 이용한 콘트롤 밸브 소음 예측 방법)

  • 이용봉;윤병로;박경암;이두희;유선학
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.703-707
    • /
    • 2002
  • This paper proposes new method for predicting sound power emitted from the control valve and piping system. The sound power level measurement method using the reverberation chamber is much easy to apply in the field compared to the method using the anechoic chamber. Measured sound power was used to determine the coefficients of the equation predicting sound power level. The noise prediction equation was developed at relative flow coefficient, 0.11. The sound power level predicted is in good agreement with the measured value. Proposed method can be used to express the noise characteristics of the control valves.

A Study on the Evaluation of the Pipe Fracture Characteristic (I) (실배관 파괴특성 평가에 관한 연구 (I))

  • Park, Jae-Sil;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.345-350
    • /
    • 2001
  • In order to perform elastic-plastic fracture mechanical analyses, fracture resistance curves for concerned materials are required. 1T-CT specimen was used to obtain fracture resistance curves. But the fracture resistance curve by the 1T-CT specimen was very conservative to evaluate the integrity of the structure. And fracture resistance curve was affected by the specimen geometry and crack plane orientation. The objective of this paper is to be certain the conservativeness of the fracture resistance curve by the 1T-CT specimen and to provide the additional safety margin. For these, the fracture tests using the real pipe specimen and standard 1T-CT specimen test were performed. 4-point bending jig was manufactured for pipe test and direct current potential drop method was used to measure the crack extension and length for pipe test. From the pipe and the 1T-CT specimen test results, it was observed that the J-integral of the 1T-CT specimen test at the crack initiation point was very small compare to that of the pipe specimen test.

  • PDF

A Study on the Evaluation of the Pipe Fracture Characteristic (실배관 파괴특성 평가에 관한 연구)

  • Park Jae-Sil;Kim Young-Jin;Seok Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.107-114
    • /
    • 2005
  • In order to analyze the elastic-plastic fracture behavior of a structure, the fracture resistance curve of the material should be known first. The standard CT specimen was used to obtain the fracture resistance curves of a piping system. However, it is known that the fracture resistance curve by the standard CT specimen is very conservative to evaluate the integrity of a structure. Also the fracture resistance curve is effected by the specimen geometry and the dimensions because of the constraint effect. The objective of this paper is to be certain the conservativeness of the fracture resistance curve by the standard CT specimen and to provide an additional safety margin. For these, the fracture tests using a real pipe specimen and the standard CT specimen test were performed. A 4-point bending jig was manufactured for the pipe test and the direct current potential drop method was used to measure the crack extension and the length for the pipe test. Also finite element analyses were performed with a CT specimen and a pipe in order to prove the additional safety margin. From the result of tests and analyses of the pipe and the standard CT specimen, it was observed that the fracture analysis with the standard CT specimen is conservative and the additional safety margin was proved.

Evaluation of the corrosion property on the welded zone of seawater pipe by A.C shielded metal arc welding (교류 피복아크 용접에 의한 해수 배관 용접부위의 부식 특성 평가)

  • Jeong, Jae-Hyun;Kim, Yun-Hae;Moon, Kyung-Man;Lee, Myeong-Hoon;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.877-885
    • /
    • 2013
  • A seawater pipe of the engine room in the ships is being surrounded with severely corrosive environments caused by fast flowing of the seawater, containing aggressive chloride ion and high conductivity etc.. Therefore, the leakage of the seawater from its pipe have been often occurred due to its local corrosion by aggressive chloride ions. Subsequently, its leakage area is usually welded by AC shielded metal arc welding with various electrodes. In this study, when the sea water pipe is welded with several types of electrodes such as E4301, E4311, E4313 and E4316, a difference of the corrosion resistance on the welding metal zones was investigated using an electrochemical method, observing microstructure, measuring polarization behaviors and hardness. The weld metal zone welded with E4313 electrode exhibited the lowest value of hardness compared to other weld metal zones. In addition, its zone indicated also the best corrosion resistance than those of other weld metal zones. Furthermore, all of the weld metal zones revealed a relatively better corrosion resistance than those of the base metal zones. and also showed higher hardness than the base metal zones.

대용량 피동형원자로의 안전계통 성능평가를 위한 냉각재상실사고 해석

  • 김성오;김영인;정법동;황영동;장문희
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.534-541
    • /
    • 1997
  • 1000MWe급 피동형원자로기 안전계통 성능 및 RELAP5 코드의 적용성 평가를 목적으로 AP600을 참조노형으로 설정된 1000MWe급 대용량 피동형원자로에 대한 냉각재 상실사고를 모의 해석하였다. 대형냉각재상실사고시 발생되는 현상들은 기존 원자로와 큰 차이가 없고, 이들 현상을 모의하기 위한 모델링 요건들이 피동형계통 분석에 동일하게 요구되었으며, 계산된 PCT가 규제기관의 허용치에 충분한 여유도를 갖고 있어 대형냉각재상실사고시 충분한 노심냉각 능력을 갖는 것으로 평가되었다. 또한 안전주입 배관이 파단되는 소형냉각재 상실사고를 해석한 결과 KP1000의 피동안전계통은 ADS의 작동에 의하여 노심을 노출시키지 않고 적절한 사고완화 기능을 수행할 수 있는 것으로 분석되었다.

  • PDF

대형 콘 칼로리미터의 신뢰성 구축을 위한 발열량 측정 결과 분석

  • Yu, U-Jun;Kim, Chang-Seop;Jeon, Gwang-Hun;Yeom, Mun-Cheon;SaGong, Seong-Ho;Kim, Jeong-Yong;Kim, Seong-Chan;Yu, Hong-Seon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.11a
    • /
    • pp.49-49
    • /
    • 2013
  • 실규모급 화재 실험의 신뢰성 있는 발열량 측정을 위해서 흡입 배관의 직경 1.6 m, 직선길이 26m, 후드 직경 10 m 그리고 흡입용량 $2,000m^3/min$ 이상의 대형 콘 칼로리미터를 구성하여 헵탄의 화재 크기별 연소 실험을 진행하였다. 발열량 측정을 비교 분석하기 위해서 산소 소모 지수법, 질량 소모법, 복사열 그리고 대류열 측정 기법에 따라서 각각의 발열량을 산출하고 크기를 비교하였다. 그 결과 대형 콘 칼로리미터에 의해서 측정한 산소 소모 지수법은 이론 발열량에 해당하는 질량 소모법과 최대 약 2.3 % 정도, 복사열에 의한 발열량 산출법은 12.2 % 정도, 연소면적에 의한 이상적인 발열량과는 최대 30 % 정도, 그리고 대류열만 고려한 경우 약 50 % 정도 차이가 나는 것을 확인하였다.

  • PDF