• 제목/요약/키워드: 실물 화재실험

Search Result 105, Processing Time 0.029 seconds

An Experimental Study for Fire Spread of Compact Cars (소형승용차의 화재전파 특성에 관한 실험적 연구)

  • Yoo, Yong-Ho;Kweon, Oh-Sang;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.279-283
    • /
    • 2010
  • 본 연구에서는 화재시 대규모 피해가 우려되는 승용차 밀집 공간을 가정하여 인접한 승용차로의 화재 전파 특성을 파악하기 위한 실물화재 실험을 실시하였다. 실험은 인접한 두 대의 승용차중 한 대의 차량에 화재를 발생시켜 화재가 성장되고 전파되는 과정을 분석하였으며, 산소소모율법을 적용한 발열량 측정이 동시에 이루어 졌다. 측정 결과 최대 열방출율은 약 9MW로 측정되어 선행된 승용차 한 대의 측정 발열량보다 약 2.5배이상 높은 범위의 값으로 평가되었다. 특히, 인접된 승용차로의 전파는 화재 발생후 약 3분 30초 경과후 창문으로 출화된 화염에 의하여 옆 차량에 화재가 전파되기 시작하였으며, 15분 경과후 완전히 화재가 전이되어 발달되었다. 따라서, 밀폐된 주차장에서의 화재시 발생초기에 가연 공간에서 화재가 진화가 이루어지지 않으면 약 3분 내에 다른 차량으로의 화재 전파가 우려 되며, 이후 급격한 피해를 줄 수 있는 상태로 화재가 성장하기 때문에 신속한 초기 대응이 필요함을 확인하였다. 이러한 실물화재실험에서 얻어낸 결과는 향후 여러 수치해석의 입력 조건으로 활용이 가능할 것이며, 화재 안전 설비 계획에 기본 자료로서 이용될 수 있을 것으로 기대된다.

  • PDF

Analysis of a Fire in an Apartment Building Using a Zone Model (ZONE MODEL을 이용한 아파트에서의 화재 해석)

  • 박진국;김충익;유홍선;윤명오
    • Fire Science and Engineering
    • /
    • v.11 no.2
    • /
    • pp.25-33
    • /
    • 1997
  • Fire hazards in an apartment building that represents the average households in Korean were investigated by conducting a full-scale experiment. This experiment attempts to analyze fire hazards using materials, and furnishings common to Korean housing stock. Experimental results are compared to the predictions of the C-FAST and smoke transport computer model. Comparisons between experimental data and C-FAST data are performed only to a living-room fire. Flashover occurred at approximately 380 seconds in a fire experinent, and at approximately 420 seconds in Zone-Model. Based on all of data between experimental data between experimental data and Zone-Model data, it is concluded that the safe egress time is at least 250 seconds.

  • PDF

The Real Scale Fire Test for Fire Safety in Apartment Housing (실물화재실험을 통한 공동주택의 화재안전성 연구)

  • Yoo, Yong-Ho;Kweon, Oh-Sang;Kim, Heung-Youl
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.57-65
    • /
    • 2009
  • This study was intended to conduct a Real-scale fire test to predict the fire behavior by unit space at the apartment building where a huge casualties and injuries are likely. After setting the inflammables inside the house, the test aimed to identify the fire characteristics to each unit item was carried out. The house was divided into 4 unit space such as kitchen, living room, bedroom and a study for a real scale fire test. As a result, bedroom reached to flashover state in 5minutes after setting the fire, indicating a rapid fire growth such as 7433.3kW of maximum thermal emissivity, 578.6ppm of carbon monoxide, 1.25ppm of carbon dioxide and $1,350^{\circ}C$ of maximum indoor temperature. Particularly, the fire growth was made up to critical temperature which might cause a severe damage to the people within 3minutes, if the fire were not extinguished at inflammable space at the early stage of fire, which stressed the need of early response. The result of a real scale fire test could be compared with the outcome of expanded simulation test and used in predicting the fire spread at the space for different use.

Fire Suppression Tests for a Train Using Water Mist Systems (미분무 소화시스템을 이용한 철도차량 실물화재 진압실험)

  • Choi, Byung-Il;Han, Yong-Shik;Do, Kyu-Hyung;Kim, Myung-Bae;Lee, Dong-Chan
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.57-65
    • /
    • 2009
  • Fire suppression tests are carried out for a train car using water mist systems. Three kinds of fire scenario applied to the real-scale train car are a surface fire representing car combustibles, a oil pool fire pretending an oil spill and a blocked fire for evaluation of space-cooling capacity. Five fixedpressure water mist systems and one self-contained water mist system with nitrogen gas are used for fire suppression experiments. Almost water mist systems can extinguish effectively train car fires, and fire-control capability of the system is seen due to the space cooling.

Full-scale Fire Suppression Test for Application of Water Mist System in Road Tunnel (미분무수 소화시스템의 도로터널 적용을 위한 실물 화재 실험)

  • Han, Yong-Shik;Choi, Byung-Il;Kim, Myung-Bae;Lee, Yu-Whan;So, Soo-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.51-56
    • /
    • 2011
  • The full-scale experiments are carried out to investigate the fire suppression characteristics of water-based fire fighting systems in a road tunnel. Applied systems are the low-pressure water spray system at 3.5 bar and the high-pressure water mist system at 60 bar. The water flow rate of the high-pressure system is one sixth only of the water spray system. A passenger car and a heptane fuel pan with area of $1.4m^2$ are used as fire sources. A blower system is installed at the tunnel exit to realize the longitudinal ventilation conditions (0.9~3.8 m/s) in the tunnel. Temperatures from the fire source to the down-stream direction are measured by K-type thermocouple trees. The experimental results show that the cooling effect of the high pressure water mist system in the test conditions were equivalent to that of the low pressure water spray system for B-class fire.

A study of the HRR and fire propagation phenomena for the fire safety design of deep road tunnel (대심도터널 화재 안전 설계를 위한 승용차의 열방출률 및 화재전파 특성에 관한 연구)

  • Yoo, Yong-Ho;Kweon, Oh-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.321-328
    • /
    • 2010
  • The study performed an actual fire experiment in order to propose the heat release rate of automobile that is the most basic architectural element for the fire safety design in a tunnel, whose importance has been recognized as the underground traffic tunnels are planned in Korean metropolitan cities. The heat release rate of a van is measured by the large scale calorimeter, in which the law of oxygen consumption is applied, and the fire expansion characteristics in a tunnel by placing two passenger cars nearby one another in the tunnel. As the results, the heat release rate of the van was revealed to be 5.9 MW, and carbon monoxide was emitted 482 ppm at a maximum. In case of two passenger car experiment for the fire expansion characteristics, the adjacent car was ignited about 3 minutes 30 seconds after the fire occurrence, and the complete fire was developed after 15 minutes. The maximum heat release was 9 MW. The results from the actual fire experiment can be an important input data for future quantitative analysis as well as an element applicable to a tunnel disaster preventive equipment design.

The Study of Development and Calibration for the Real Scale Fire Test Facility (실대형화재평가장치의 개발 및 안정화에 관한 연구)

  • Yoo, Yong-Ho;Kim, Heung-Youl;Shin, Hyun-Jun
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The reduced scale fire test provides basic data but it is not enough to analysis real fire problem directly because there is no exact analogy theory between a real fire and the reduced scale model. Therefore, we have developed the 10 MW large scale calorimeter in order to real scale fire test. This advanced large scale calorimeter used for physical properties such as a heat release rate, based upon consumption of $O_2$ method. Using the heptane pool fire, we carried out the calibration in order to evaluation for heat release rate. It is approve that this facility has the reliability and it is capable of applying to the advance fire research in the future.

침대매트리스 실물화재평가의 열방출율 측정에 대한 Uncertainty 연구

  • Park, Gye-Won;Jeong, Jae-Gun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.103-104
    • /
    • 2013
  • 본 연구에서는 침대 매트리스에 대해서, 실물규모 화재시험을 이용한 열방출율(Heat release rate: 이하 HRR)을 측정할 때의 불확도(Uncertainty) 산정을 위한 정보제공을 목적으로 함. 실제 실험데이터를 바탕으로 불확도에 영향 미치는 개별요인들을 도출한 개별 요인들의 합성을 통해 불확도를 산정하였음.

  • PDF

A Study on the Response Characteristics of Fire Detector by Full-scale Experiment of Fire Phenomena in the Row House (주택 실물화재실험에 의한 화재감지기 응답특성에 관한 연구)

  • SaKong, Seong-Ho;Kim, Shi-Kuk;Lee, Chun-Ha;Jung, Jong-Jin
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.67-72
    • /
    • 2009
  • This paper is for response feature of fire detectors not only to analysis response feature of fire detector, but also to observe flame spread of inside-building and fire enlargement by using the row house which is supposed to be broken up. Many kinds of popular detectors such as heat type detector(differential type, fixed temperature type, Analogue type)and smoke type(light scattered type, Analogue type, single alarm type) were installed in the house in order to check for the change of temperature by installing of thermocouples. As a result, smoke detectors are better than heat detectors when it comes to making effective fire-detect system in the row house.