• Title/Summary/Keyword: 실리콘 미세 가공

검색결과 58건 처리시간 0.026초

MEMS 박막의 푸와송 비 측정을 위한 미소굽힘기법 (Nano-bending method for the measurement of the Poisson's ratio of MEMS thin films)

  • 김종훈;김정길;연순창;전윤광;한준희;이호영;김용협
    • 한국항공우주학회지
    • /
    • 제31권2호
    • /
    • pp.57-62
    • /
    • 2003
  • MEMS(미소전기기계시스템) 박막의 푸와송비 측정을 위한 미소굽힙기법이 제안되었다. 푸와송비 측정에 민감한 쌍원시편(두 개의 원모양)을 설계하고 표면미세가공 공정을 사용하여 제작하였다. 미소압입기로 하중을 가한 쌍원시편의 하중-변위 곡선을 분석하여 푸와송비를 측정할 수 있었다. 제안도니 미소굽힘기법은 표면미세가공에 적합하여 소자제작과정에서의 동시측정이 가능하고(in-situ measurement), 소자가 위치해 있는 작은 영영에서의 물성을 국부적으로 측정할 수 있는 장점이 있다. 제안된 기법을 검증하기 위하여 저압화학기상증착법에 의하여 증착된 2.3㎛ 다결정실리콘(Poly-silicon)의 푸와송비를 측정하였다. 실험에 사용된 다결정실리콘막의 푸와송비는 0.2569 이고 쌍원시편의 강성에 대한 측정표준편차는 2.66% 이었다.

단결정 실리콘 미세 홀 가공특성에 관한 연구 (A Study on the Characteristics of Silicon Micro-hole machining)

  • 채승수;이상민;박휘근;조준현;이종찬;허찬
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.75-80
    • /
    • 2013
  • Cathode is an essential component used in plasma etching process which is to make micro pattern on the silicon wafer. The currently used cathodes produce particles at the high temperature plasma etching process. To overcome this problem, a 'Silicon Only Cathode' was developed. This 'Silicon Only Cathode' requires manufacturing process changes due to the change of shapes, material features, and machining characteristics of work materials. This research investigates the small hole drilling process. The conclusion is that PCD drills with twist angles of $20^{\circ}$ and $25^{\circ}$ were tested for small hole drilling and the experimental results indicate that the drill with $25^{\circ}$ twist angle drill causes less thrust force.

미세가공 정전용량형 초음파 탐촉자 개발(II) - 미세공정기술 분석 (Development of capacitive Micromachined Ultrasonic Transducer (II) - Analysis of Microfabrication Process)

  • 김기복;안봉영;박해원;김영주;김국진;이승석
    • 비파괴검사학회지
    • /
    • 제24권6호
    • /
    • pp.573-580
    • /
    • 2004
  • 본 연구는 cMUT 제작을 위한 미세공정기술을 개발하기 위하여 수행되었다. 이를 위하여 외국의 관련 제조공정 연구결과들을 분석하였다. cMUT 제작의 주요 공정인 미소 진동 박막 형성, 희생층 형성, 식각 공정에 대한 실험을 수행하여 적절한 공정조건을 찾고자 하였다. 각 제작 공정조건들을 변화시켜 가면서 증착된 실리콘 질화막의 두께, 균일도, 잔류응력을 측정하였다. 희생층으로서 실리콘 산화막의 공정조건을 변화시켜 가면서 산화막의 성장률을 분석하였다. 마지막으로 희생층 식각을 위한 최적 식각공정을 얻기 위한 실험을 수행하였다. 본 연구에서 얻어진 주요 미세공정 조건은 추후 cMUT 제작에 적용될 예정이다.

레이저빔 응용 가공기술 (Laser beam application technology)

  • 윤경구;김재구;황경현
    • 기계저널
    • /
    • 제37권12호
    • /
    • pp.47-52
    • /
    • 1997
  • 엑사이머 레이저는 Ar, Kr, Xe등의 희귀가스와 F, Cl과 같은 할로겐족 가스를 혼합하여 방전여기에 의해 발진되는 157-350mm 파장대에 자외선 레이저이다. UV레이저를 이용하면 종래의 기계 가공 공정으로 실현할 수 없는 극소형 및 초정밀의 기계구조, 센서 또는 액츄에이터를 비접촉식으로 할 수 있고 가공시 열손상이 거의 없다. 최근 제품의 소형화 및 박막화 추세에 따른 미세가공 기술의 급속한 발전을 살펴보면, Uv레이저를 이용한 실리콘 표면의 도핑(dopping)에 관한 연구, 미소전자 패키징에 레이저를 이용하는 방법뿐만 아니라, 레이저 유도에 의한 금속과 혼합물의 물질전달 현상을 활용한 마이크로 패터닝에 관한 연구도 진행되고 있다. 본 글에서는 여러가지 응용분야 중 레이저 어블레이션, 레이저유도화학에칭, 레이저 PVD등에 대하여 기술한다.

  • PDF

마이크로 블라스터를 이용한 태양전지용 재생웨이퍼 제작

  • 정동건;공대영;조준환;전성찬;서창택;이윤호;조찬섭;배영호;이종현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.376-377
    • /
    • 2011
  • 결정질 실리콘 태양전지 연구에 있어서 가장 중요한 부분은 재료의 저가화와 공정의 단순화에 의한 저가의 태양전지 셀 제작 부분과 고효율의 태양전지 셀 제작 부분이다. 본 논문에서는 마이크로 블라스터를 이용하여 폐 실리콘 웨이퍼를 태양전지용 재생웨이퍼를 제작함으로써 고효율을 가지는 단결정 실리콘 웨이퍼를 저 가격에 생산하기 위한 것이다. 특히 마이크로 블라스터를 이용하여 폐 실리콘 웨이퍼를 가공 할 때 표면에 생성되는 요철은 기존 태양전지 셀 제작에서 텍스쳐링 공정과 같은 표면 구조를 가지게 됨으로써 태양전지 셀에 제작 공정을 줄일 수 있는 효과도 가지게 된다. 마이크로 블라스터는 챔버 내에 압축된 공기나 가스에 의해 가속 된 미세 파우더들이 재료와 충돌하면서 재료에 충격을 주고 그 충격에 의해 물질이 식각되는 기계적 건식 식각 공정 기술이다. 이러한 물리적 충격을 이용하는 마이크로 블라스터 공정은 기존 재생웨이퍼 제작 공정 보다 낮은 재처리 비용으로 간단하게 태양전지용 재생웨이퍼를 제작 할 수 있다. 하지만 마이크로 블라스터를 이용하면 표면에 식각된 미세 파티클의 재흡착이 일어나게 되므로 이를 제거하기 위하여 DRE(damage remove etching) 공정이 필요하게 된다. 본 연구에서는 이방성, 등방성 식각 공정으로 태양전지용 재생웨이퍼를 제작하기 위해 가장 적합한 DRE 공정을 찾기 위해 등방성 식각은 RIE 식각으로, 그리고 이방성 식각은 TMAH 식각을 이용하였다. 마이크로 블라스터 공정 후 표면 반사율과 SEM 사진을 이용한 표면 요철 구조를 확인 하였고, DRE 공정 후 표면 반사율과 SEM 사진을 이용하여 표면 요철 구조를 확인 하였다. 각각의 lifetime을 측정하여 표면 식각으로 생성된 결함들을 분석하여 태양전지용 재생웨이퍼 제작에 가장 적합한 공정을 확인 하였다.

  • PDF

RF MEMS Package 기술 및 응용

  • 김진양;이해영
    • 한국전자파학회지:전자파기술
    • /
    • 제13권2호
    • /
    • pp.60-70
    • /
    • 2002
  • 최근 고성능/고집적 RF 소자 및 시스템들의 경박 단소화 추세에 따라 RF 무선 통신 분야에도 초소형미세 가공 기술인 MEMS 기술이 크게 주목받고 있다. 이에 본 고에서는 RF 부품 및 시스템을 MEMS 기술로서 실장하는 RF MEMS 패키지 기술에 대하여 간단히 살펴보았다. 우선, 실리콘 기반의 MEMS 패키지가 우수한 열 전달 특성과 저 손실의 고주파특성으로 인해 RF 시스템의 실장에 매우 적합함을 확인하였다. 또한, MEMS 기술을 이용함으로써 RF회로와 패키지 제작 공정이 동시에 이루어질 수 있도록 하는 일괄터리공정에 대하여 소개하였다.

엑사이머 레이져를 이용한 실리콘웨이퍼의 미세가공

  • 윤경구;이성국;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1058-1062
    • /
    • 1997
  • Development of laser induced chemical etching technologt with KrF laser are carried out in this study for micromachining of silicon wafer. The paper is devoted to experimental identification of excimer laser induced mechanism of silicon under chlorine pressures(0.02~500torr). Experimental results on pulsed KrF excimer laser etching of silicon in chorine atmosphere are presented. Etching rate dependency on laser fluence and chlorine pressure are discussed on the basis of experimental analysis, it is concluded that accurate digital micro machining process of silicon wafer can achieved by KrF laser induced chemical etching technology.

단결정 실리콘의 3차원 미세패턴 가공 기술

  • 김대은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.143-145
    • /
    • 1996
  • A new method of fabricating 3-dimensional patterns on single crystal silicon is presented in this paper. The method utlizes both chemical and mechanical reactions to make patterns with dimensions of few microns in width and submicron in height. The primaryadvantage ofthis new method over conventional methods of making patterns on silicon lies in its cost effectiveness and speed. The process introduced in this paper is a maskless process and does not reauire expensive capital investment. It is expected that this method can be employed for flexible and cost effective fabrication of micro-machine components in MEMS application.

액상에서의 엑시머 레이저 실리콘 미세가공 (Excimer laser micromachining of silicon in liquid phase)

  • 장덕석;김동식
    • 한국레이저가공학회지
    • /
    • 제11권1호
    • /
    • pp.12-18
    • /
    • 2008
  • Laser micromachining is a promising technique to fabricate the micro-scale devices. However, there remains important challenges to reducethe redeposition of ablated materials around the laser irradiated zone and to get a smooth surface, especially for metal and semiconductor materials. To achieve the high-quality micromachined devices, various methods have been developed. Liquid-assisted micromachining can be a good solution to overcome the previously mentioned problems. During the laser ablation process, the liquid around the solid sample dramatically changes the ablation characteristics, such as ablation rate, surface profile, formation of debris, and so on. In this investigation, we conducted the laser micromachining of Si in various liquid environmental conditions, such as liquid types, liquid thickness. In addition, using nanoscale time-resolved shadowgraphy technique, we observed the ablation process in liquid environments to understand the mechanism of liquid-assisted laser micromachining.

  • PDF

실리콘 에피층을 이용한 자동차 에어백용 가속도계 (Airbag Accelerometers Using Silicon Epitaxial Layers)

  • 고종수;김규현;이창렬;조영호;이귀로;곽병만
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.9-15
    • /
    • 1996
  • A silicon microaccelerometer is designed and fabricated using silicon epitaxial layers for automotive electronic airbag applications. A cantilever structure is chosen for high sensitivity and piezoresistive detection method is adopted for circuit simplicity and low cost. An optimum design is used to find optimum microstructure sizes for maximum sensitivity subject to performance requirements and design constraints on natural frequency, damping ratio, maximum allowable stress and microfabrication limitations. The microaccelerometer is fabricated by micromachining processing steps, composed of material-selective and orientation-dependent chemical etching techniques. Fabricated prototype shows a sensitivity of 88.6$\mu\textrm{V}$/g within a resonant frequency of 1.75KHz. Estimated performance of the microaccelerometer is compared with measured one. Discrepancy between the theoretical values and the experimental values is discussed together with possible sources of the errors.

  • PDF