• Title/Summary/Keyword: 실리(實理)

Search Result 2,308, Processing Time 0.022 seconds

Characteristics of Alkali-Silica Reaction according to Types and Substitution Ratios of Mineral Admixtures in Korea (국내 광물성 혼화재의 종류 및 혼입률에 따른 알칼리-실리카 반응 특성)

  • Kim, Seong-Kwon;Hong, Seung-Ho;Hur, In;Yun, Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The distresses of alkali-silica reaction (ASR) was recently reported at highway cement concrete pavement in Korea, which showed typical cracking and spalling patterns of ARS. Korea is was no longer safe zone against ASR, needding to find a control methodology against ASR. The purpose of this research was to provide a control methodology against ASR using mineral admixtures through a series of laboratory test program. Laboratory works included the accelerated mortar bar test (AMBT) by ASTM C 1260 regulation with five types of aggregate and three types of mineral admixtures (fly ash, ground granulated blast-furnace slag and silica fume). The result of ASTM C 1260 test for five types of aggregates without mineral admixtures showed that Siltstone and Mudstone were found to be "reactive." Tuff and Andesite-1 were found to be "possiblely reactive." In case of concrete mixed with 10, 20, and 30% fly ash, all specimens except Mudstone mixed with 10% FA were found to be "non-reactive". In cases of concrete mixed with 30, 40, and 50% ground granulated blast-furnace slag and 5, 7.5, and 10% silica fume, all specimens were found to be "non-reactive." These results could be selectively applied in constructions in Korea.

Characterization of Silica Sol Particle Prepared by Sol-Gel Reaction from Sodium Silicate Solution (소디움실리케이트 수용액(水溶液)으로부터 솔-젤 반응(反應)에 의해 제조(製造)된 실리카 솔 입자특성(粒子特性) 고찰(考察))

  • Kim, Chul-Joo;Kim, Sung-Don;Jang, Hee-Dong;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.30-37
    • /
    • 2009
  • Silica sol was prepared from the mixture of sodium silicate solution and oxidized silicate solution in which sodium had been removed by sol-gel process. The properties of sodium silicate solution and silicate solution thus prepared were characterized by yellow silicomolydate method. Moreover, the formation and growth of silica sol from sodium silicate solution was investigated. Sodium silicate solution with 2% of $SiO_2$ contains 95% of reactive silicate, and 50% of reactive silicate participates sol-gel reaction. From the results of FT-IR analysis, it was found that the intensity of silanol bond decreased and the intensity of siloxane bond increased with increasing reaction temperature. Zeta potential of silica sol prepared at each condition was -40~-60 mV and it could be known that silica sol in this study was well dispersed. The silica sol with 5~10 nm size could be prepared by heating the mixed solution of sodium silicate and silicate solution. And the silica sol grew into about 20 nm as silicate solution was added to silica sol solution.

Effect of Size and Morphology of Silica Abrasives on Oxide Removal Rate for Chemical Mechanical Polishing (기계화학적 연마용 실리카 연마재의 형상과 크기가 산화막 연마율에 미치는 영향)

  • Lee, Jinho;Lim, Hyung Mi;Huh, Su-Hyun;Jeong, Jeong-Hwan;Kim, Dae Sung;Lee, Seung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.631-635
    • /
    • 2011
  • Spherical and non-spherical silica particles prepared by the direct oxidation were studied for the effect of the particle size and shape of these particles on oxide CMP removal rate. Spherical silica particles, which have 10~100 nm in size, were prepared by the direct oxidation process from silicon in the presence of alkali catalyst. The 10 nm silica particles were aggregated by addition of an acid, an alcohol, or a silane as an aggregation inducer between the particles. Two or more aggregated silica particles were used as a seed to grow non spherical silica particles in the direct oxidation process of silicon in the presence of alkali catalyst. The oxide removal rate of spherical silica particles increased with increasing an average particle size for spherical silica abrasives in the oxide CMP. It further increased non-spherical particles, compared with the spherical particles in the similar average particle size.

In-company Facilitator A Study on Roles and Team Creativit - Through Innovation-oriented Culture and Team Empowerment (기업 내 퍼실리테이터의 역할과 팀 창의성에 관한 연구 - 혁신지향문화와 팀 임파워먼트를 매개로)

  • Lee, Eun-Jung;Seo, Young-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.586-598
    • /
    • 2022
  • In research on the role of facilitators, studies on the effects of facilitators who conduct meetings and workshops within companies on innovation-oriented culture, team empowerment, and team creativity are insufficient. The purpose of this study is to verify the effect of the role of the facilitator (process management, change management) on innovation-oriented culture and team empowerment, and the effect on team creativity by mediating innovation-oriented culture and team empowerment. To this end, we surveyed members with experience in facilitating workshops at domestic companies and analyzed 299 collected data using SPSS 24 and Smart PLS 3.0. (+) had an effect. Second, innovation-oriented culture and team empowerment had a positive (+) effect on team creativity. Third, the role of the facilitator had a positive (+) effect on team creativity by mediating innovation-oriented culture and team empowerment. Through this study, the relationship between the role of the facilitator and other variables was explored and theoretically expanded, and practical implications for the role of the facilitator and enhancement of creativity required by the organization were presented.

A Study on Cure Behavior of an Epoxy/Anhydride System and Silica Filler Effects (에폭시-산무수물 조성물의 경화거동 및 실리카 첨가에 따른 특성변화 연구)

  • Lee, Chung Hee;Kim, Kyoung-Mahn
    • Journal of Adhesion and Interface
    • /
    • v.10 no.3
    • /
    • pp.117-126
    • /
    • 2009
  • Epoxy/anhydride systems with silica filler were studied to improve the cure behavior and characteristics. To study the curing process of epoxy/anhydride using DSC and a stress rheometer, it was observed that gelation temperature increased by increasing the thermal rate or in high isothermal conditions, while it was observed that the degree of cure at gelation decreased. Thermal stability of the epoxy/anhydride system showed any increment by increasing silica contents, except slight decrease of weight by containing humidity. The epoxy resin cured with 30% of silica filler decreased coefficient thermal expansion (CTE) about 33% to show $40ppm/^{\circ}C$. Specimens filled with 30 wt% of silica showed 60% increase in storage modulus at $30^{\circ}C$ to show 3909 MPa compared with neat resin to 2,377 MPa. Epoxy/anhydride systems with surface treated silica by silane coupling agent decreased storage modulus.

  • PDF

A study on the synthesis of porous silica from a sodium silicate (물유리로부터 다공성 실리카 제조에 관한 연구)

  • Yoo, Jeong-Kun;Keum, Young-Ho;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2519-2525
    • /
    • 2014
  • WeI have studied the process for synthesizing porous silica with a specific surface area of minimum $800m^2/g$ by adding surfactant [Poly Etylene Glycol(PEG) and Hydroxy Propyl Cellulose(HPC)] to the sol-gel reaction between sodium silicate and hydrochloric acid. NaCl, the by-product of the sol-gel reaction, was water cleaned and removed; when 200 ml of water was used to clean 50 g of silica gel, NaCl remaining in the silica gel was reduced to maximum 0.81wt%. The appropriate level of surfactant for silica gel synthesizing proved to be below 5%. As a result of the experiment, for the silica synthesized by adding surfactant of HPC(2.5%)+PEG(2.5%), the surfactant area was $860m^2/g$ and grain size was $20-50{\mu}m$. From this study, we have concluded that it is of industrial significance that specific surface area is improved and silica of a regular grain size is obtained just by adding surfactant in the gel process or drying process of silica.

Synthesis of Vinyl-nano Silica Ball Composite : Its Application to Clearcoat (비닐-나노실리카볼 화합물의 클리어코트 특성 연구)

  • Kim, Bong-Gyeom;Park, Gun-Hee;Lee, Yong-Hwa;Noh, Seung-Man;Lee, Jae-Woo;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.670-675
    • /
    • 2010
  • Inorganic-organic hybrid material such as vinyl-nano sized silica ball was synthesized by acrylo-alkoxysilane and nano silica ball with different particle size. And then they were formulated into acrylic-melamine clearcoat. This material is fully characterized with various analytical methods and applied for strength measurement. The glossy effect, matting effect and anti-scratching properties of materials were investigated for further growth and maintenance. When the particle size of nano silica ball is 20~30 nm, the glossy retain effect was increased by 7% compared to bare acrylic-melamine clearcoat. When a commercially available silica Aerosil 200 (Hydrophilic fumed silica, average particle size 12 nm, Degussa) react with vinyl alkoxysilane vinyl-fumed silica complex form. The vinyl-fumed silica along with clearcoat increases only 2% increase at glossy retain. Nano-scratch test results also support the glossy retain effect of vinyl nano-sized silica ball in clearcoat.

Influence of Surface Characteristics of Mesoporous Silica on Pb(II) and Cd(II) Adsorption Behavirous (Mesoporous silica의 표면특성이 Pb(II)와 Cd(II)의 흡착거동에 미치는 영향)

  • Lee, Ha-Young;Lee, Kamp-Du;Park, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.673-679
    • /
    • 2008
  • In this study, Mesoporous silica were prepared from hydrothermal synthesis using gel mixture of tetraethylorthosilcate (TEOS) as silica source and cetyltrimethylammonium bromide(CTMABr) as a template. In the optimum synthesis cause, molar ratio of template and silica changed. The surface and structure properties of Mesoporous silica were determined by XRD, SEM, and BET. N$_2$ adsorption isotherm characteristics, including the specific surface area(S$_{BET}$), total pore volume(V$_T$), and average pore diameter(D$_{BJH}$), were determined by BET. Also, the adsorption character of Pb(II) and Cd(II) ion on Mesoporous silica were measured using ICP. As a result, a SBET of 100$\sim$1,500 m$^2$/g was determined from the N$_2$ adsorption isotherm. Also, the average pore diameter of 2$\sim$4 nm. The adsorption of Pb ion and Cd ion on Mesoporous silica become different depending on the pH of solution. The adsorption amount of Mesoporus silica had higher than that of silicagel.

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar (실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2013
  • This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

Preparation and Gas Permeation Properties of Silica Membranes on Porous Stainless Steel-Tube Supports (다공성 금속 지지체에 제조된 실리카 분리막의 기체 투과 특성)

  • Lee, Hye Ryeon;Seo, Bongkuk
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.177-184
    • /
    • 2014
  • Silica membranes with high permeability were prepared using colloidal and polymeric silica sols on a porous stainless steel-tube support by a DRFF and SRFF method. Silica sols were derived with tetraethylorthosilicate (TEOS) by sol-gel method and analyzed with DLS, FE-SEM, and $N_2$ adsorption. The coating of the intermediate layer with colloidal silica sol on the stainless steel-tube support led to a denser surface morphology of the membrane along with a considerable reduction in the number of surface defect. As the polymeric silica sol enclosed the colloidal silica sol with spherical particles during the SRFF method, the separation-layer-coated silica membrane showed a denser surface than the intermediate layer. Moreover, the silica membranes showed high hydrogen gas permeability of $(6.63-9.21){\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ with low $H_2/N_2$ perm-selectivity (2.9-3.1) at room temperatures.