• Title/Summary/Keyword: 실내 위치 추적 서비스

Search Result 62, Processing Time 0.02 seconds

Mobile Device User Trajectory Analysis and Route Recommendation Method based on Intersection Region Indexing (교차점 기반 구역 인덱싱을 이용한 모바일 장치 사용자 이동 궤적 분석 및 경로 추천 방법)

  • Kwak, Kwangjin;Kim, Jeongjoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.1 no.1
    • /
    • pp.79-85
    • /
    • 2015
  • According to the growing use of the personal GPS in the mobile device recently, the LBS (Local bases service), which processes and refines the GPS information, such as a position-tracking service, a public safety service, a local based information service, has increased steadily. Due to the refraction or reflection of GPS, however, it is impossible to use GPS around or in buildings. Therefore, it is necessary to correct the errors of GPS. We propose the method which corrects the errors of GPS and creates the refined trajectory using intersection region indexing. After analyzing the trajectory, receiving trajectories from many people and identifying the similarity between of trajectories, we will recommend the favorite route and useful information such as restaurant, convenience store, bus station and emergency call service.

Indoor autonomous driving system based on Internet of Things (사물인터넷 기반의 실내 자율주행 시스템)

  • Seong-Hyeon Lee;Ah-Eun Kwak;Seung-Hye Lee;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.69-75
    • /
    • 2024
  • This paper proposes an IoT-based indoor autonomous driving system that applies SLAM (Simultaneous Localization And Mapping) and Navigation techniques in a ROS (Robot Operating System) environment based on TurtleBot3. The proposed autonomous driving system can be applied to indoor autonomous wheelchairs and robots. In this study, the operation was verified by applying it to an indoor self-driving wheelchair. The proposed autonomous driving system provides two functions. First, indoor environment information is collected and stored, which allows the wheelchair to recognize obstacles. By performing navigation using the map created through this, the rider can move to the desired location through autonomous driving of the wheelchair. Second, it provides the ability to track and move a specific logo through image recognition using OpenCV. Through this, information services can be received from guides wearing uniforms with the organization's unique logo. The proposed system is expected to provide convenience to passengers by improving mobility, safety, and usability over existing wheelchairs.