• Title/Summary/Keyword: 실내환경성능

Search Result 563, Processing Time 0.028 seconds

Evaluation of Deterioration Propagation Life of Steel Bridge Paints According to Surface Treatment Methods and Heavy-Duty Painting Types (표면처리방법에 따른 강교용 일반중방식도장계의 열화진행수명 평가)

  • Kim, Gi-Hyeok;Jeong, Young-Soo;Ahn, Jin-Hee;Kim, In-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • In this study, to evaluate deterioration propagation life and deterioration curve of the shop painted and field re-painted steel bridges, accelerated corrosion tests were carried out on 4 types of heavy-duty painting systems with different surface treatments. The surface treatments prior to painting were examined by hand tool(SSPC SP-2), power tool(SP-3,) or blast cleaning(SP-10) considering shop painting and field re-painting. The paint deterioration curves for each painting system and surface treatment were evaluated based on corrosion propagation from the initial paint defects. From the test results, the paint deterioration life of shop painted and field re-painted system was evaluated and compared by using corrosivity categories and durability performance evaluation of structural steel. The deterioration propagation life of shop and field paint was estimated in 18 to 21 years and 5.3 to 8.0 years with atmospheric corrosion category C4.

A Study on the Design and Implementation of a Thermal Imaging Temperature Screening System for Monitoring the Risk of Infectious Diseases in Enclosed Indoor Spaces (밀폐공간 내 감염병 위험도 모니터링을 위한 열화상 온도 스크리닝 시스템 설계 및 구현에 대한 연구)

  • Jae-Young, Jung;You-Jin, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Respiratory infections such as COVID-19 mainly occur within enclosed spaces. The presence or absence of abnormal symptoms of respiratory infectious diseases is judged through initial symptoms such as fever, cough, sneezing and difficulty breathing, and constant monitoring of these early symptoms is required. In this paper, image matching correction was performed for the RGB camera module and the thermal imaging camera module, and the temperature of the thermal imaging camera module for the measurement environment was calibrated using a blackbody. To detection the target recommended by the standard, a deep learning-based object recognition algorithm and the inner canthus recognition model were developed, and the model accuracy was derived by applying a dataset of 100 experimenters. Also, the error according to the measured distance was corrected through the object distance measurement using the Lidar module and the linear regression correction module. To measure the performance of the proposed model, an experimental environment consisting of a motor stage, an infrared thermography temperature screening system and a blackbody was established, and the error accuracy within 0.28℃ was shown as a result of temperature measurement according to a variable distance between 1m and 3.5 m.

Analysis of grout injection distance in single rock joint (단일절리 암반에서 그라우팅 주입거리 분석)

  • Ji-Yeong Kim;Jo-Hyun Weon;Jong-Won Lee;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.541-554
    • /
    • 2023
  • The utilization of underground spaces in relation to tunnels and energy/waste storage is on the rise. To ensure the stability of underground spaces, it is crucial to reinforce rock fractures and discontinuities. Discontinuities, such as joints, can weaken the strength of the rock and lead to groundwater inflow into underground spaces. In order to enhance the strength and stability of the area around these discontinuities, rock grouting techniques are employed. However, during rock grouting, it is impossible to visually confirm whether the grouting material is being smoothly injected as intended. Without proper injection, the expected increases in strength, durability, and degree of consolidation may not be achieved. Therefore, it is necessary to predict in advance whether the grouting material is being injected as designed. In this study, we aimed to assess the injection performance based on injection variables such as the water/cement mixture ratio, injection pressure, and injection flow using UDEC (Universal Distinct Element Code) numerical program. Additionally, numerical results were validated by the lab experiment. The results of this study are expected to help optimize variables such as injection material properties, injection time, and pump pressure in the grouting design in the field.

Building Energy Savings due to Incorporated Daylight-Glazing Systems (통합 채광시스템의 건물 냉난방 에너지 성능평가)

  • Kim, Jeong-Tai;Ahn, Hyun-Tae;Kim, Gon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • The quantity of light available for a space can be translated in term of the amount of energy savings through a process of a building energy simulation. To get significant energy savings in general illumination, the electric lighting system must be incorporated with a daylight - activated dimmer control. A prototype configuration of an once interior has been established and the integration between the building envelope and lighting and HVAC systems is evaluated based on computer modeling of a lighting control facility. First of all, an energy-efficient luminaire system is designed and the lighting analysis program, Lumen-Micro 2000 predicts the optimal layout of a conventional fluorescent lighting future to meet the designed lighting level and calculates unit power density, which translates the demanded met of electric lighting energy. A dimming control system integrated with the contribution of daylighting has been applied to the operating of the artificial lighting. Annual cooling load due to lighting and the projecting saving amount of cooling load due to daylighting under overcast diffuse sky m evaluated by computer software ENER-Win. In brief, the results from building energy simulation with measured daylight illumination levels and the performance of lighting control system indicate that daylighting can save over 70 percent of the required energy for general illumination in the perimeter zones through the year A 25[%] of electric energy for cooling and almost all off heating energy may be saved by dimming and turning off the luminaires in the perimeter zones.

A Numerical Study on the Performance Analysis of a Solar Air Heating System with Forced Circulation Method (강제순환 방식의 공기가열식 태양열 집열기의 성능분석에 관한 수치해석 연구)

  • Park, Hyeong-Su;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2017
  • The aim of this study was to develop a device for solving the heating problem of living space using heated air, utilizing a simple air heater type collector for solar energy. At the present time, this study assessed the possibility of a development system through theoretical calculations for the amount of available energy according to the size change of the air-heated solar energy collector. To produce and supply hot water using the heat energy of the sun, hot water at $100^{\circ}C$ or less was produced using a flat or vacuum tube type collector. The purpose of this study was to research the air heating type solar collector that utilizes heating energy with heating air above $75^{\circ}C$, by designing and manufacturing an air piping type solar collector that is a simpler type than a conventional solar collector system. The analysis results were obtained for the generated air temperature ($^{\circ}C$) and the production of air (kg/h) to determine the performance of air heating by an air-heated solar collector according to the heat transfer characteristics in the collector of the model when a specified amount of heat flux was dropped into a solar collector of a certain size using PHOENICS, which is a heat flow analysis program applying the Finite Volume Method. From the analysis result, the temperature of the air obtained was approximately $40.5^{\circ}C$, which could be heated using an air heating tube with an inner diameter of 0.1m made of aluminum in a collector with a size of $1.2m{\times}1.1m{\times}0.19m$. The production of air was approximately 161 m3/h. This device can be applied to maintain a suitable environment for human activity using the heat energy of the sun.

An Object Recognition Performance Improvement of Automatic Door using Ultrasonic Sensor (초음파 센서를 이용한 자동문의 물체인식 성능개선)

  • Kim, Gi-Doo;Won, Seo-Yeon;Kim, Hie-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.97-107
    • /
    • 2017
  • In the field of automatic door, the infrared rays and microwave sensor are much used as the important components in charge of the motor's operation control of open and close through the incoming signal of object recognition. In case of existing system that the sensor of the infrared rays and microwave are applied to the automatic door, there are many malfunctions by the infrared rays and visible rays of the sun. Because the automatic doors are usually installed outside of building in state of exposure. The environmental change by temperature difference occurs the noise of object recognition detection signal. With this problem, the hardware fault that the detection sensor is unable to follow the object moving rapidly within detection area makes the sensing blind spot. This fault should be improved as soon as possible. Because It influences safety of passengers who use the automatic doors. This paper conducted an experiment to improve the detection area by installing extra ultrasonic sensor besides existing detection sensor. So, this paper realize the computing circuit and detection algorithm which can correctly and rapidly process the access route of objects moving fast and the location area of fixed obstacles by applying detection and advantages of ultrasonic signal to the automatic doors. With this, It is proved that the automatic door applying ultrasonic sensor is improved detection area of blind spot sensing through field test and improvement plan is proposed.

Evaluation of Chloride Behavior and Service Life in Long-Term Aged FA Concrete through Probabilistic Analysis (장기재령 FA 콘크리트에 대한 염화물 거동 및 확률론적 염해 내구수명 평가)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • In this study, accelerated chloride diffusion tests were performed on OPC(Ordinary Portland Cement) and FA(Fly Ash) concrete considering three levels o f W/B(Water to Binder) ratio o n 1,095 curing days. The accelerated chloride diffusion coefficient and the passed charge were evaluated in accordance with Tang's method and ASTM C 1202, and the resistance performance to chloride attack improved over time. FA concrete showed excellent resistance performance against chloride penetration with help of pozzolanic reaction. As the result of the passed charge, FA concrete showed durability improvement, "low" grade to "very low" grade, but OPC concrete changed "moderate" grade to "low" grade at 1,095 curing days. After assuming the design variables used for durability design as normal distribution functions, the service life of each case was evaluated by the probabilistic analysis method based on MCS(Monte Carlo Simulation). In FA concrete, the increase of probability of durability failure was lower than that of OPC concrete with increasing time, because the time-dependent coefficient of FA concrete was up to 3.2 times higher than OPC concrete. In addition, the service life by probabilistic analysis was evaluated lower than the service life by deterministic analysis, since the target probability of durability failure was set to 10%. It is considered that more economical durability design will be possible if the mo re suitable target probability of durability failure is set for various structures through researches on actual conditions and indoor tests under various circumstances.

Roof Ventilation Structures and Ridge Vent Effect for Single Span Greenhouses of Arch Shape (아치형 단동온실의 지붕환기구조 및 천창효과)

  • Nam, Sang-Woon
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.99-107
    • /
    • 2001
  • It is difficult to install a ventilation window on the roof of single span greenhouses of arch shape. Investigation on the roof ventilation structures for those greenhouses was conducted. In small greenhouses with spans of 5 to 8 m, circular or chimney type ridge vents made of plastic were employed. In large greenhouses with spans of 12 to 18 m, even span roll-up ridge vents made of steel pipe were employed. The effect of roof ventilation was evaluated by comparative experiments between greenhouse installing ridge vents and having controlled side vents only. Roof ventilation contributed greatly to restraint of temperature rise and maintenance of uniform temperature distribution in greenhouses. And ventilation efficiency was analyzed by experiments on the opening and closing operation of the ridge and side vent. There were no temperature differences according to opening and closing sequence of ventilation window. But for greenhouse temperature control by ventilation, it is desirable to open side vents after ridge vents and to close ridge vents after side vents.

  • PDF

Slotted ALOHA Random Access with Multiple Coverage Classes for IoT Applications (사물인터넷 응용을 위한 다중 커버리지 클래스를 지원하는 슬롯화된 알로하 랜덤 접속)

  • Kim, Sujin;Chae, Seungyeob;Cho, Sangjin;Rim, Minjoong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.554-561
    • /
    • 2017
  • IoT (Internet of Things) devices are often located in environments where indoor or underground, signals are difficult to reach. In addition, the transmission power is low, the base station should be designed to be able to receive signals even at low reception sensitivity. For this reason, a device having a poor channel condition can be transmitted at a low data rate using a low coding rate or repetition. When the coverage class is divided according to the channel condition and the data rate, the packet length may vary from one coverage class to another, and the performance of the slotted aloha random access may be degraded. We will focus on two methods of using shared-resource and seperate resources among multiple slotted aloha methods. In particular, when devices with different coverage classes use shared resources, performance of a device with a bad channel condition may deteriorate. Conversely, when using separate resources for each coverage class, there is a problem that congestion may occur which increases the number of devices that perform random access to one resource area. In this paper, we propose some methods to overcome this problem. This study is mainly focused on MTC devices, and is considered to be a high possibility of future development.

Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset (실생활 음향 데이터 기반 이중 CNN 구조를 특징으로 하는 음향 이벤트 인식 알고리즘)

  • Suh, Sangwon;Lim, Wootaek;Jeong, Youngho;Lee, Taejin;Kim, Hui Yong
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.855-865
    • /
    • 2018
  • Sound event detection is one of the research areas to model human auditory cognitive characteristics by recognizing events in an environment with multiple acoustic events and determining the onset and offset time for each event. DCASE, a research group on acoustic scene classification and sound event detection, is proceeding challenges to encourage participation of researchers and to activate sound event detection research. However, the size of the dataset provided by the DCASE Challenge is relatively small compared to ImageNet, which is a representative dataset for visual object recognition, and there are not many open sources for the acoustic dataset. In this study, the sound events that can occur in indoor and outdoor are collected on a larger scale and annotated for dataset construction. Furthermore, to improve the performance of the sound event detection task, we developed a dual CNN structured sound event detection system by adding a supplementary neural network to a convolutional neural network to determine the presence of sound events. Finally, we conducted a comparative experiment with both baseline systems of the DCASE 2016 and 2017.