• Title/Summary/Keyword: 실내환경설계

Search Result 471, Processing Time 0.026 seconds

Derivation of Constraint Factors Affecting Passenger's In-Vehicle Activity of Urban Air Mobility's Personal Air Vehicle and Design Criteria According to the Level of Human Impact (도심항공모빌리티 비행체 PAV 탑승자 실내행위에 영향을 미치는 제약 요소 도출 및 인체 영향 수준에 따른 설계 기준)

  • Jin, Seok-Jun;Oh, Young-Hoon;Ju, Da Young
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.3-20
    • /
    • 2022
  • Recently, prior to the commercialization of urban air mobility (UAM), the importance of R&D for air transportation-related industries in urban areas has significantly increased. To create a UAM environment, research is being conducted on personal air vehicles (PAVs). They are key means of air transportation, but research on the physical factors influencing their passengers is relatively insufficient. In particular, because the PAV is expected to be used as a living space for the passengers, research on the effects of the physical elements generated in the PAV on the human body is essential to design an interior space that supports the in-vehicle activities of the passengers. Therefore, the purpose of this study is to derive the constraint factors that affect the human body due to the air navigation characteristics of the PAV and to understand the impact of these constraint factors on the bodies of the passengers performing in-vehicle activities. The results of this study indicate that when the PAV was operated at less than 4,000 ft, which is the operating standard, the constraint factors were noise, vibration, and motion sickness caused by low-frequency motion. These constraint factors affect in-vehicle activity; thus, the in-vehicle activities that can be performed in a PAV were derived using autonomous cars, airplanes, and PAV concept cases. Furthermore, considering the impact of the constraint factors and their levels on the human body, recommended constraint factor criteria to support in-vehicle activities were established. To reduce the level of impact of the constraint factors on the human body and to support in-vehicle activity, the seat's shape and built-in functions of the seat (vibration reduction function, temperature control, LED lighting, etc.) and external noise reduction using a directional speaker for each individual seat were recommended. Moreover, it was suggested that interior materials for noise and vibration reduction should be used in the design of the interior space. The contributions of this study are the determination of the constraint factors affecting the in-vehicle PAV activity and the confirmation of the level of impact of the factors on the human body; in the future, these findings can be used as basic data for suitable PAV interior design.

Performance Evaluation of Rockfall Prevention Net Using Laboratory Pullout Test (실내인발시험을 이용한 낙석방지망 성능평가)

  • Kim, TaeSik;Seo, JinHyuk;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.12
    • /
    • pp.11-16
    • /
    • 2020
  • It is necessary to assess the proper performance of the existing rockfall prevention net in order to minimize the damage to human lives and property in the event of rockfall. However, there is no standard for performance evaluation of rockfall prevention net in Korea, and only the design of rockfall prevention net exists by calculating energy that can be absorbed energy. Therefore, laboratory pullout test was conducted for the performance evaluation of the rockfall prevention net, cuts and load-displacement characteristics of the PVC coating net used in the laboratory pullout test are determined to identify the performance of the rockfall prevention net.

Analysis of a structure between Comfort Feeling and Sensibility in Indoor Environment by Using Fuzzy Inference (퍼지추론을 이용한 실내환경 쾌적감성과 감각과의 구조 분석)

  • Kim, Jin;Cho, Am
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.11a
    • /
    • pp.121-126
    • /
    • 1998
  • 인간이 쾌적하다고 느끼게 되는 것에는 인간과 환경간의 상호작용이 포함되어 있다. 쾌적한 환경을 만든다고 할 때에는 인간과 환경을 하나의 시스템으로 두고 관련되는 여러 요소들이 계속적으로 피이드백 되는 것으로 생각하여야 한다. 쾌적감이란 여러 가지 감성 요소가 복합적으로 조합되어 하나의 이미지와 합치되는 것으로 표현되는 고도의 심리적인 체험감이다. 그러므로 쾌적환경에 대하여 인간의 특성을 중심으로 설계하려고 하면 인간이 쾌적환경을 인지하는 과정이 어떤 과정을 거치게 되는가를 알고 그 특성을 고려하여야 한다. 본 연구는 쾌적감을 구성하고 있는 요소이미지가 어떻게 구성되어 있으며, 환경요소에 대한 감각이미지와는 어떤 구조로서 이루어져 있는 지를 실험적으로 알아보고 퍼지 추론을 이용하여 표현하였다.

  • PDF

Implementation of A Monitoring System using Image Data and Environment Data (영상정보와 환경정보를 이용한 실내 공간 모니터링 시스템 구현)

  • Cha, Kyung-Ae;Kwon, Cha-Uk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The objective of this study is to design a system that automatically monitors the state of interior spaces like offices where lots of people are coming and going through image data and environment data, which includes temperature, humidity, and other conditions, and implement and test related application programs. In practice, there are lots of image data automatically obtained by unmanned equipments, such as certain types of CCTVs, for monitoring situation in usual interior spaces. This image data can be used as a more effective manner by establishing a system that recognizes situation in specific interior spaces based on the relationship between image and environment data. For instance, it is possible to perform unmanned on/off controls for various electronic equipments, such as air conditioners, lights, and other devices, through analyzing the data acquisited from environment sensors (temperature, humidity, and illumination) as dynamic states are not maintained for a specified period of time. For implementing these controls, this study analyzes environment data acquisited from temperature and humidity sensors and image data input from wireless cameras to recognize situation and that can be used to automatically control environment variables configured by users. Experiments were applied in a laboratory where unmanned controls were effectively performed as automatic on/off controls for the air conditioner and lights installed in the laboratory as certain motions were detected or undetected for a specified period of time.

Indoor Propagation Channel Modeling Using the Finite Difference Time Domain Method (시간영역 유한차분법을 이용한 실내 전파 채널 모델링)

  • Chung, Sun-Oh;Lim, Yeong-Seog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1847-1853
    • /
    • 2011
  • Analysis of an indoor propagation channel has conventionally used the ray-tracing method. But, in this paper, we had modelling the channel for three dimensional indoor structure by the finite difference time domain method for three dimensional full wave analysis. An excitation signal of the FDTD method used plane wave. The plane wave was excited using the total field/scattered field method. And absorbing boundary condition used the perfectly matched layer method with 7 layers. An living room for the simulation of indoor channel modeling is surrounded the wall that be composed of the wood, the conductor, the glass and concrete. When there are furniture in the living room or not, it were simulated, respectively. As simulation results, we could identify the fading effect of multipath at indoor propagation environment, calculated mean excess delay and rms delay spread for the receiver design.

Experimental Investigation on In-Situ Capping Erosion by Waves (피복공법 적용 시 파랑에 의한 피복재 침식 실험 연구)

  • Kong, Jin-Young;Kim, Young-Taek;Ryu, Byung-Hyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.33-43
    • /
    • 2016
  • The determination of in-situ capping materials is one of the most important factors to design in-situ capping in order to protect capping materials from erosion. Previous studies have established relationship between the velocity induced by wave energy and effective diameter of sediments, but they are mostly empirical and numerical researches which is too complicated for field engineers to analyze the erosion of in-situ capping materials. This study provides simple analytical solutions and reliability based on hydraulic model test results. Experimental results show that measured flow velocities with respect to depth induced by wave energy are almost the same as estimated velocities and the erosion resistances of the different effective particle diameters can be estimated.

Design of Neuro-Fuzzy LED Emotional Lighting System for Concentration and Resting Situations in Indoor Environment (실내 환경 집중 및 휴식상황에서의 뉴로-퍼지를 통한 LED 감성조명 시스템 설계)

  • Kang, Eun-Yeong;Kim, Hyo-Jun;Park, Keon-Jun;Kim, Young-Kab
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.558-566
    • /
    • 2015
  • LED, the next-generation light source, rapidly develops and has advantages of low power, high efficiency, and long life. Accordingly, an interest in lightings by using LED rises. If emotional lighting is implemented by using LED, all colors can be represented by using 3 primary colors of light, differently from the conventional single-color lighting. LED emotional lightings which can control human emotions continue to be developed thanks to these advantages. This study was conducted to design an algorithm for expressing LED emotional lighting in line with the situation and temperature by extracting colors for concentration and resting situations in indoor environment and mixing them with colors of the temperature felt by user. The LED emotional lighting designed with a neuro-fuzzy system was found to have effects on user's emotions during concentration and resting.

Daylighting Performance based Parametric Design focused on the Office Building at the conceptual phase of BIM (설계 초기 단계 BIM 형상정보 파라메트릭 연동을 통한 오피스 실내조도 분석)

  • Park, Jung-Dae;Jo, Chan-Won;Jeon, Min-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.475-481
    • /
    • 2019
  • The importance of performance-based design feedback is being emphasized when it comes to the potential impact that affects all the lifecycle of the building. However, the latency and disconnection of domain expert in the sector of AEC/FM remain current obstacles between design and performance feedback. It is hard to utilize performance feedback information for design exploration and support design decision making during the conceptual phase of design. Using parametric design, this paper proposes various design alternatives from a set of rules and constraints defined by algorithms for the geometric configurations of an Office Building. A Building Performance Analysis (BPA) was to developed using Autodesk® Revit® 2019 which integrates Autodesk® Green Building Studio® to predict its sufficient daylighting conditions of the LEED v4's Daylighting Autonomy (DA). The parametric-based performance feedback of this study outlines potential design improvements for further exploration in application to the early design process.

A Qualitative Case Study on the Application of Spatial Design in the One-Person Housing Space by Combining BIM Design Technology (BIM 설계 기술을 융합한 1인 주거공간디자인 사례연구)

  • Kim, Ji Eun;Park, Eun Soo
    • Korea Science and Art Forum
    • /
    • v.37 no.2
    • /
    • pp.101-112
    • /
    • 2019
  • Regardless of the size, the role and meaning of the space required for human daily life are the same. Especially, as the spatial design is small and the size is small, the careful design and problem solving are needed to enable comfortable and convenient life even in a narrow space. The purpose of this study is to design a convergence model that utilizes the advantages of BIM, which can simulate actual design based on a new one-person housing space design plan optimized for one person. This study applied the BIM design technology to one-person housing 2D design, and the suitability examination and the space optimization design of the interior design were carried out. As a result of the study, utility of space improvement, consideration of housing environment, interference check, application of eco-friendly housing system, and MEP design item were derived. Therefore, BIM space design in interior space has been confirmed as a way to overcome limit and inefficiency of 2D design which is applied to actual space by various space design elements. Based on the results of this study, the One-person housing space model, which is applied to the study, is a pure creation designed based on various one-person housing of social and cultural peculiarities derived from previous research. This design example was applied to BIM technology to confirm the detailed and practical design possibility.

RF Circuit Design for IEEE 802.11p Implementation (IEEE 802.11p 구현을 위한 RF 회로 설계)

  • Lee, Se-Yeun;Lee, Myung-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • The WAVE specification, which for the Next-Generation ITS environment is a common title: IEEE 802.11p and IEEE P1609 specifications. These days, there are many activities for researching WAVE specification by release of the IEEE 802.11p specification. The difference between high-speed vehicle environment and the indoor environment, the wireless communication channel mode is that much more severe. Thus, the wireless communication system design, temperature, noise, multipath fading and can degrade the performance of the system points should be fully considered matters of. In this paper, we showed WAVE wireless communication system which based on IEEE 802.11p PHY/MAC design process, and also showed solving process many implementation problems.