• Title/Summary/Keyword: 실내유동

Search Result 247, Processing Time 0.025 seconds

Assessment of Surface Boundary Conditions for Predicting Ground Temperature Distribution (지중온도 변화 예측을 위한 지표면 경계조건 검토)

  • Jang, Changkyu;Choi, Changho;Lee, Chulho;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.75-84
    • /
    • 2013
  • Soil freezing is a phenomenon arising due to temperature difference between atmosphere and ground, and physical properties of soils vary upon the phase change of soil void from liquid to solid (ice). A heat-transfer mechanism for this case can be explained by the conduction in soil layers and the convection on ground surface. Accordingly, the evaluation of proper thermal properties of soils and the convective condition of ground surface is an important task for understanding freezing phenomenon. To describe convection on ground surface, simplified coefficient methods can be applied to deal with various conditions, such as atmospheric temperature, surface vegetation conditions, and soil constituents. In this study, two methods such as n-factor and convection coefficient for the convective ground surface boundary were applied within a commercial numerical program (TEMP/W) for modeling soil freezing phenomenon. Furthermore, the numerical results were compared to laboratory testing results. In the series of the comparison results, the convection coefficient is more appropriate than n-factor method to model the convective boundary condition.

A Study on the Estimation of Optimal Unit Content of Binder for the Soil Stabilizer Using the Recycled Resource in DMM (심층혼합공법에서 순환자원을 활용한 지반안정재의 최적 단위결합재량 산정에 관한 연구)

  • Seo, Se-Gwan;Lee, Khang-Soo;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.37-44
    • /
    • 2019
  • The compressive strength of the soil stabilizer in the deep mixing method (DMM) depends on kinds of soil, particle size distribution, and water content. Because of this, Laboratory test has to perform to estimate the unit weight of binder to confirm the satisfaction of the design strength. In this study, uniaxial compression strength was measured by mixing the soil stabilizers developed in the previous study with clay in Busan, Yeosu, and Incheon area. And the strength enhancement effect was evaluated comparing with blast furnace slag cement (BFSC). Also, the relationship between the unit content of binder and uniaxial compressive strength was investigated in order to easily calculate the unit weight of binder required to ensure the stability of the ground at the field. As the results of the analysis, the relationship between the unit content of binder and the uniaxial compressive strength are ${\gamma}_B=(108.93+0.0284q_u){\pm}35$ when W/B is 70%, and ${\gamma}_B=(122.93+0.0270q_u){\pm}40$ when W/B is 80%.

Face Stability Assessment of Slurry-shield Tunnels - Concentrating on Slurry Clogging Effect - (슬러리 쉴드 터널의 막장 안정성 평가 - 슬러리의 폐색효과를 중심으로 -)

  • Lee, In-Mo;Lee, Sam;Cho, Kook-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.95-107
    • /
    • 2004
  • In this paper, the rheological characteristics of slurry used fur slurry-shield tunnels were studied with emphasis on penetration characteristics. The slurry penetration was modeled by soil-filter clogging theory. The coefficient of particle deposition was suggested as an indicator of sin clogging during tunnel construction and calculated through model tests. The measured slurry weight, clogged in the base soil, was compared with the value obtained from clogging theory. Based on the testing results, a stability analysis of a tunnel face was performed to pinpoint the most influential factor affecting stability of slurry-shield tunnels. It was found that the stability of tunnel face is dependent on the ratio of infiltration velocity to the coefficient of particle deposition, and the penetration distance of slurry increases with the ratio of infiltration velocity to the coefficient of particle deposition. Since the stability of tunnel face decreases with the slurry penetration distance, it was necessary to add some additives in order to reduce the slurry penetration distance. It was found that the ground condition needs additives when the soil has the effective particle diameter$(D_{10})$ larger than 0.75mm. It was also found that the tunnel face stability due to slurry penetration is significantly affected by the tunnel advance rate.

Case study on soil conditioning for EPB tunneling and troubleshooting in various grounds (다양한 지반에서의 EPB TBM 첨가제 사용 및 문제 해결 사례 연구)

  • Han-byul Kang;Sung-wook Kang;Jae-hoon Jung;Jae-won Lee;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.65-85
    • /
    • 2023
  • The use of TBM (Tunnel boring machine) has increased worldwide due to its performance together with the benefit of being safely and environmentally friendly compared to conventional tunneling. In particular, EPB (Earth Pressure Balanced) TBM is widely used because it can be applied to various grounds compared to Open TBM. Also EPB TBM has a simple mechanical structure and advantages in cost, requires less ground area than Slurry TBM. EPB TBM has advantages in soft ground, and more importantly, can extend its applicability by use of appropriate soil conditioning, which improves mechanical and hydrological properties of excavated soil and increases the excavation performance of EPB TBM. Various studies suggested the proper mixing ratio and injection ratio, but almost they are limited to laboratory test under atmospheric pressure such as slump test. Actual field conditions may differ depending on the ground and mechanical condition. In this study, first the amount of used soil conditioning used in the field with various grounds from hard rock to soft ground was estimated through laboratory tests and compared with the estimate in design stage. And also it was compared with the amount used during actual excavation. In addition, experience of soil conditioning for the problems of cutter head clogging and groundwater inrush that occurred during excavation is discussed. Finally, lesson learned for the use of soil conditioning in difficult ground condition such as mixed ground are reviewed.

Flow and Strength Characteristics of the Lightweight Foamed CLSM(Controlled Low-Strength Materials) with Coal Ash (석탄회를 활용한 경량기포유동화재의 플로우 및 강도 특성)

  • Lee, Seungjun;Lee, Jonghwi;Chae, Hwiyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.73-82
    • /
    • 2011
  • Coal ash of industial by-products was not recycled about 30% in total emissions. Moreover, it caused environmental pollution as well as wasted unnecessary expenses and time. Currently, fly ash(FA) is recycled as construction material however ponded ash(PA) is mostly buried. Lightweight foamed Controlled Low-Strength Materials(CLSM) evaluated in this study reduces unit weight by mixing foam in the traditional Controlled Low-Strength Material and has lightweight and flowability to be available for backfill materials in construction. Flow test, unconfined compressive strength test, and foamed-slurry unit weight test were performed in this study and the applicability of lightweight foamed CLSM for construction materials was evaluated. The results indicate that the mixture ratio(PA:FA) ranging from 70:30 to 50:50, cement of 7%, foam of 2~3%, and water content of 26.5~29.5% were required to satisfy the following standards such as flow value(i.e., 20cm), unconfined compressive strength(i.e., 0.8~1.2MPa), and foamed-slurry unit weight(i.e., $12{\sim}15kN/m^3$).

An Experimental Study on Filling Material for Bored Pile Using High Calcium Ash (고칼슘 연소재를 이용한 매입말뚝의 주면고정액에 관한 실험적 연구)

  • Song, Sang-Hwon;Lim, Yang-Hyun;Seo, Se-Gwan;Cho, Dae-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.13-20
    • /
    • 2017
  • In this study, laboratory tests were performed to evaluate for new filling materials (ZA-Soil) for bored pile that were developed using by high calcium ash. As a result of laboratory test, the uniaxial compression strength of 2 types of ZA-Soil are shown 68.0% and 64.6% compared to ordinary portland cement. And it have a suitable flowability and environmental stability. Also, after 28days, uniaxial compression strength of material mixed with soil and high strength filling material (ZA-Soil) for bored pile is 1.10-1.23 times bigger than material mixed with ordinary portland cement.

An Interpretation of Deleuze's Other Geometry in Terms of Liquid Space - Focused on Works Published since 2000 - (리퀴드 스페이스에 대한 들뢰즈의 타자의 기하학적 해석 - 2000년도 이후 발표된 작품을 중심으로 -)

  • Kim Sun-Hee;Lee Hanna
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.5 s.52
    • /
    • pp.98-105
    • /
    • 2005
  • Through advanced computer technology, our physical environment became a flexible and liquid space that is a multi-functional space structure, hetero-alliance, formless, interactivity. We attempt to interpretate Deleuze's Other geometry as a space designer. Hence first, the aim of this study is to define the meaning of the Other and Other geometry. Second, to extract keywords out of the Other geometry to analyze the work. Third, to analyze the work using the space formative languages(blob, blurring, distortion, folding, layering, lightness, nesting, repetition, shear, transparency, twisting, unfolding, warping, waving, and weaving). The 13 works were selected which have been issued after year 2000 with the focus on liquid space studies. The methods of this study are literature research and contents analysis. The results of the analysis were as follows. First, the source is the Other who is a hidden potentials in the surrounding environment, and this source has the capability of making it part of reality anytime. Other geometry means it is a theory that is comprised of various lines that with the kind of experiences that one has in life. Second, the key words that were extracted from the theory of Deleuze's Other geometry were of (1)hetero-alliance(reflected in a sculptured shape or a fluid abstract form), (2)dis-form(by speculating the user's movements, and combining space elements with external forces), (3)interactivity (information was exchanged real time between the user and his environment where the space took on a sensory institution). Finally, after studying the works using the space formative languages, we found that blob, warping, waving were used externally, and repetition, warping and waving for mostly used internally.

Mapping algorithm for Error Compensation of Indoor Localization System (실내 측위 시스템의 오차 보정을 위한 매핑 알고리즘)

  • Kim, Tae-Kyum;Cho, We-Duke
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.109-117
    • /
    • 2010
  • With the advent of new technologies such as HSDPA, WiBro(Wireless Broadband) and personal devices, we can access various contents and services anytime and anywhere. A location based service(LBS) is essential for providing personalized services with individual location information in ubiquitous computing environment. In this paper, we propose mapping algorithm for error compensation of indoor localization system. Also we explain filter and indoor localization system. we have developed mapping algorithms composed of a map recognition method and a position compensation method. The map recognition method achieves physical space recognition and map element relation extraction. We improved the accuracy of position searching. In addition, we reduced position errors using a dynamic scale factor.

A Study on physical conception expressed in exhibition space -Focused on Movement- (전시공간에 표현되어진 체(體)지각 개념의 유형고찰 - '움직임'을 중심으로 -)

  • Choi, Hee-Rang;Cha, Sang-Gi
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.6
    • /
    • pp.77-85
    • /
    • 2007
  • The space where one's body lives is not only a space as the simple environment that is built with the physical factors, but also a space experienced by a movement accompanied by the concept of body perception including mental activities. In this study, the importance of the body is recognized and the meaning of the space of body perception including mental activities is understood. In this manner, the spatial unfolding phase and expression features are to be investigated through a standard of "What do they change?" by grasping those as a flexible space that changes spatial recognition. The following results have been drawn in this study; First, the application of the flexible concept in the space can give rise to the activities of an experiencing person in terms of being the object of spatial experience and appreciation. Also, the application changes a slightly static concept into a relative and dynamic space by introducing the movement. Second, the establishment of a space by a human's movement is accompanied by all perceptions and enables to perceive the space shape, the space itself and mutual communication between the spaces. Third, the expression of the human's movement in the fixed form of space lies in the extension of the fused spacial area with an observer beyond the physical spatial limitation. As human body intervenes in space, the meaning of the space has become more abundant and diverse and the space will be presented as the arena for sensitive and flexible communication as a responsive space that corresponds.

Characterization of Acryl Polymer Concretes for Ultra Thin Overlays (초박층 덧씌우기용 아크릴 폴리머 콘크리트의 특성 연구)

  • Kim, Dae-Young;Kim, Tae-Woo;Lee, Hyun-Jong;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • This study is performed to evaluate the physical and mechanical characteristics of an acryl polymer concrete that is developed as an overlay material for cement concrete slabs and pavements. Various laboratory tests including viscosity, flow, compressive strength, flexural strength, tensile strength, linear shrinkage, thermal expansion and thermal compatibility tests are performed. It is observed from the laboratory tests that the acryl polymer concrete developed in this study satisfies all the requirements suggested by ACI guideline. In addition to the laboratory tests, an accelerated performance testing (APT) is conducted to validate the performance of the acryl polymer concrete. During the APT, no significant distresses are observed until 15,903,939 cycles of equivalent single axle loading is applied. Finally, a 10mm thick overlay with the acryl polymer concrete is applied on top of an old deteriorated concrete pavement to evaluate field performance. Right after the field construction, skid resistance, noise and roughness are measured. The skid resistance and noise level have been significantly improved while the roughness is increased. Periodic investigation for the field study section will be conducted to evaluate the long-term performance.