• Title/Summary/Keyword: 실내시험시공

Search Result 233, Processing Time 0.027 seconds

Evaluation of Ground Thermal Conductivity by Performing In-Situ Thermal Response test (TRT) and CFD Back-Analysis (현장 열응답 시험(TRT)과 CFD 역해석을 통한 지반의 열전도도 평가)

  • Park, Moonseo;Lee, Chulho;Park, Sangwoo;Sohn, Byonghu;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.5-15
    • /
    • 2012
  • In this study, a series of CFD (Computational Fluid Dynamics) numerical analyses were performed in order to evaluate the thermal performance of six full-scale closed-loop vertical ground heat exchangers constructed in a test bed located in Wonju. The circulation HDPE pipe, borehole and surrounding ground formation were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow fluid and the variation of the surrounding ground temperature with depth were adopted in the FLUENT model. The relevant thermal properties of materials measured in laboratory were used in the numerical analyses to compare the thermal efficiency of various types of the heat exchangers installed in the test bed. The simulation results provide a verification for the in-situ thermal response test (TRT) data. The CFD numerical back-analysis with the ground thermal conductivity of 4 W/mK yielded better agreement with the in-situ thermal response tests than with the ground thermal conductivity of 3 W/mK.

Application Performance for Test Section of Premixed Fly Ash Concrete Pavement (프리믹스 플라이애시 콘크리트 포장 현장 적용 특성)

  • Hong, Seung-Ho;Han, Seung-Hwan;Lee, Byung-Duk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.765-768
    • /
    • 2008
  • The prevent methods of Alkali-Silica Reaction (ASR) are studying after the failure cases by ASR were reported in Korea. When ASR failure is causing to the step of maintenance, the available repair methods were rarely studied in the World. In this study, premixed fly ash cement was applied to prevent ASR in the concrete pavement. The ratio of fly ash and cement is 20 percent and 80 percent by weight of total cementious material. The construction performance of premixed fly ash cementious concrete pavement was studied that the application is verify to performance collected data during the constructing in the field. The freeze-thaw test was studied to verify durability of the premixed fly ash cementious material made specimen in the laboratory. The results show that construction performance and durability are well condition in this test section and freeze-thaw test.

  • PDF

Mix Design and Physical Properties of Concrete Used in Seongdeok Multi-purpose Dam (성덕 다목적댐 콘크리트의 배합설계 및 역학적 특성)

  • Kim, Jin-Keun;Jang, Bong-Seok;Ha, Jae-Dam;Ryu, Jong-Hyun;Go, Suk-Woo;Kim, Jeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.517-520
    • /
    • 2008
  • Gravity dam use self weight to stand external force like hydraulic pressure. In general, gravity dam concrete is divided into internal and external concrete. Seongdeok dam is gravity dam which is being constructed in Cheongsong-gun, Gyeonsangbuk-do. And upstream cofferdam was constructed to examine the temperature crack due to hydration heat and to decide the height of placement. In this study, we examined the mix design of internal/external concrete and physical properties(compressive strength, adiabatic temperature rise). And we also performed laboratory tests to verify exothermic properties. Lastly, we measured the hydration heat and thermal stress of upstream cofferdam.

  • PDF

Installation Damage Assessment of Geogrids by Laboratory Tester (실내 시험기에 의한 지오그리드의 시공 시 손상 평가)

  • Jeon, Han-Yong;Jin, Yong-Bum;Jang, Yeon-Soo;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.77-86
    • /
    • 2007
  • Installation damage of 3 types of geogrids was evaluated with compaction condition by laboratory tester. This experimental was in accordance with ENV ISO 10722-1. First, soil distribution and water content were conducted. And then we changed cyclic loading time and type of geogrids as a factor of installation damage. The samples are woven, warp-knitted, welded type of 6, 8, 10T. This study aims to give an insight into the relationships between installation damage and cyclic loading time. The result of studies was that strength of the damaged geogrids can be closely correlated with the time of loading cycles. Especially, welded type shows slower slope than two types of geogrids due to coating materials. That means welded type is coated with PP (Polypropylene), but the other two types of geogrids are coated with PVC (Polyvinyl Chloride). To confirm another factor different method was performed. The size of soil was used between 9.5 mm and 23.5 m to compare initial experimental. Cyclic loading compaction is taken 200 times before installation test and the reason is that the reduction factor of this case by installation damage was higher than other compaction loading conditions.

The Relationship between Rock Strength Characteristics and Net Penetration Rate of RBM by Pilot Test (시험시공을 통한 암석의 강도특성과 RBM의 순관입률과의 관계)

  • 이석원;조만섭;배규진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.201-209
    • /
    • 2003
  • For the purpose of research study, a vertical shaft of 98m in length and 3.05m in diameter was constructed in the layer of conglomerate by using the Raise Boring Machine (RBM). In order to estimate the net penetration rate of the RBM, which can be used in the stage of design, the in-situ test results were analysed and correlated to data from the boring log in situ and laboratory testing. Its average net penetration rate is 2.233mm/rev while its average advance rate is 0.382m/hr, which is lower than that of TBM(Tunnel Boving Machine). It turns out that the net penetration rate increases with the increase of strength characteristics in rock mass (e.g., uniaxial compression strength, tensile strength, etc.). Similarly, the net penetration rate increases linearly with the hardness of rock mass. These results are contrary to the results of the previous construction sites where the TBM was generally used in the layer of hard rock. However, the trend obtained in this study is in accordance with the findings of Barton suggesting the relationship between Q$_TBM$ and penetration rate in the layer of soft rock. Thus, the trend is valid in soft and/or weathered rocks.

A Study on the Reinforcement of Bridge Foundation in the Limestone Cavity (석회암 공동지역의 교량기초 보강에 관한 연구)

  • Lee, Sang-Chul;Ryu, Chang-Yeol;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • Irregular distributions of limestone cavity in Gang-Won province area may cause unexpected accidents from reduced serviceability or failure of structure. It is requested that an appropriate ground reinforcement method should be used to improve bearing capacity of structure, and the method should also be satisfied with environmental requirements. Among several methods used for foundation constructions in cavity area, Rod Jet Pile(RJP) method has been widely used. While the RJP method was used to improve bearing capacity for the railway bridge foundations, water pollutions of drinking water as well as fishery located adjacent to this project area were occurred. The main reason of the water pollution was cement runoff used in cement mortar during injecting material in RJP method. Laboratory tests were performed to prevent water pollution. The compaction mortar method using low movable material was selected for this project. The quality of water at a fishery adjacent to the site and the compressive strength of cores taken from the construction site were measured. Test results show that the water pollutions was minimized, and the average compressive strength of foundation material was over 5 MPa. As a result of this study, compaction mortar method can be used to ensure the bearing capacity of foundation and to prevent environment pollutions.

Fundamental Study on Establishing the Subgrade Compaction Control Criteria of DCPT with Laboratory Test and In-situ Tests (실내 및 현장실험를 통한 DCPT의 노상토 다짐관리기준 정립에 관한 기초연구)

  • Choi, Jun-Seong
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.103-116
    • /
    • 2008
  • In this study, in-situ testing method, Dynamic Cone Penetration Test(DCPT) was presented to establish a new compaction control criteria with using mechanical property like elastic modulus instead of unit weight for field compaction control. Soil chamber tests and in-situ tests were carried out to confirm DCPT tests can predict the designed elastic modulus after field compaction, and correlation analysis among the DCPT, CBR and resilient modulus of sub grade were performed. Also, DCPT test spacing criteria in the construction site was proposed from the literature review. In the result of laboratory tests, Livneh's equation was the best in correlation between PR of DCPT and CBR, George and Pradesh's equation was the best in the predicted resilient modulus. In the resilient modulus using FWD, Gudishala's equation estimates little larger than predicted resilient modulus and Chen's equation estimates little smaller. And KICT's equation estimates the modulus smaller than predicted resilient modulus. But using the results of laboratory resilient modulus tests considering the deviatoric and confining stress from the moving vehicle, the KICT's equation was the best. In the results of In-situ DCPT tests, the variation of PR can occur according to size distribution of penetrate points. So DCPT test spacing was proposed to reduce the difference of PR. Also it was shows that average PR was different according to subgrade materials although the subgrade was satisfied the degree of compaction. Especially large sized materials show smaller PR, and it is also found that field water contents have influence a lot of degree of compaction but a little on the average PR of the DCPT tests.

  • PDF

Prediction of Physical Characteristics of Cement-Admixed Clay Ground (점토-시멘트 혼합 지반의 물리적 특성 예측)

  • Park, Minchul;Jeon, Jesung;Jeong, Sangguk;Lee, Song
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.529-536
    • /
    • 2014
  • Physical characteristics of cement-admixed clay such as water content, specific gravity, unit weight and void ratio are main factors for strength, compressibility and prediction of consolidation behavior. In the past, the physical characteristics of admixed soils could be understanded through complex laboratory tests and field survey after construction. In this study, the tests were performed with conditions such as clay water contents 0%-170%, cement contents 5%-25% and curing period 3-90days after that analyzed for changes which are water content, specific gravity unit weight and void ratio of admixed soils. A prediction of properties through mechanical relationships with clay in situ water content, cement content and curing period could be proposed using the test results. The prediction equation of void ratio of admixed soils was derived using void ratio equation in geotechnical engineering and compared with test results of bangkok clay and then this study could be verified.

$C_a/C_c$ for Marine Clay at Southern Part of Korea by Laboratory Consolidation Tests (실내압밀시험에 의한 남해안 해성점토의 $C_a/C_c$)

  • 김규선;임형덕;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.87-98
    • /
    • 1999
  • Consolidation settlements on soft clay are often greatly and potentially damaging to structures. Currently, large-scale projects are in planning or progressing in Korea. These structures will be constructed on both thick and soft clay layers, and so the accurate evaluation of magnitude of settlement is required at every step in design and construction. Especially, secondary compression may play an important role in consolidation settlements of soft clay. Generally, the magnitudes of secondary compression are evaluated by laboratory and in-situ consolidation tests. The empirical $C_a/C_c$ may be economical, fast and powerful tool in estimating secondary consolidation settlement. However, the databases of the $C_a/C_c$ at construction site in Korea are insufficient. The purpose of this study is to investigate the relationship of $C_a/C_c$ on marine clay near the southern sea in Korea. A series of incremental loading consolidation tests (measuring base pore water pressure) is peformed. It was found that the $C_a/C_c$ on undisturbed marine clay is 0.0397.

  • PDF

Reduction of Horizontal Earth Pressure on Retaining Structures by a Synthetic Compressible Inclusion (압축성재료를 이용한 콘크리트 옹벽의 수평토압 저감방안에 대한 연구)

  • Yoo, Ki-Cheong;Paik, Young-Shik;Kim, Ho-Bi;Kim, Khi-Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2003
  • Current methods for lateral thrust calculations are based on the classical formulations of Rankine or Coulomb. However, the previous studies indicate that lateral earth pressures acting on the wall stem, which is the function of deformation parameters of the backfill, are close to the active condition only in the top half of the wall stem and in the lower half of the wall stem, the lateral earth pressures are significantly in excess of the active pressures. This paper presents the compressible inclusion function of EPS which can results in reduction of static earth pressure by accomodating the movement of retained soil. A series of model tests were conducted to evaluate the reduction of static earth pressure using EPS inclusion and determine the optimum stiffness of EPS. Also, field test was conducted to evaluate the reduction of static earth pressure using EPS inclusion. Based on field test it is found that the magnitude of static earth pressure can be reduced about 20% compared with classical active earth pressure.

  • PDF