• Title/Summary/Keyword: 실내라돈

Search Result 104, Processing Time 0.021 seconds

Radon Reduction Performance of Adsorbent for Making Radon-Reducing Functional Board (라돈 저감형 기능성 보드제작을 위한 흡착재의 라돈 저감 성능)

  • Kim, Ki-Hoon;Pyeon, Su-Jeong;Kim, Yeon-Ho;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • In this study, an experiment was conducted to evaluate the properties of cement matrix using diatomite and silica gel as adsorbents of radon. The adsorption properties of diatomite of a natural adsorbent and silica gel of an artificial sorbent were examined to confirm the reduction of radon gas concentration of the removal of radon gas in the indoor environment of the human body. We conducted a performance evaluation for the study. The fluidity, air content, density, absorption, flexural failure load, thermal conductivity and radon gas concentration of the specimen using diatomite and silica gel were measured. the fluidity and the air content of the adsorbed matrix with diatomite were decreased as the diatomite replacement ratio increased. Which seems to affect the subsequent matrix by the absorption of the compounding water of diatomite. As the replacement rate of silica gel increased, the fluidity decreased and the air content increased up to constant replacement rate. It is judged that the surface of the silica gel has a critical point at which it can react with moisture.

A Study on the Indoor Radon Concentration of Elementary Schools in Seoul (서울시내 초등학교에서의 실내라돈 농도에 관한 조사 연구)

  • 김영준;김진용;박성은;신동천
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.297-298
    • /
    • 1999
  • 라돈과 라돈 낭핵종은 예전부터 생활환경 중에 존재해 왔던 것으로 최근 산업화등으로 인해 급격히 증가하는 다른 오염물질과는 그 발생원이 다소 차이가 있지만 폐암, 위암등의 암을 유발시키는 중요한 요인이라는 것이 미국, 캐나다, 체코의 우라늄 광산 및 스웨덴, 영국의 비우라늄 광산에서 확인된 바 있어 그 관리의 중요성이 나날이 대두되고 있다(Guimond 등, 1979; UN, 1977).(중략)

  • PDF

Realistic Internal Dose Assessment of Indoor Radon Pollution by Groundwater (지하수로 인한 실내라돈오염시 현실적인 인체노출량 평가)

  • 유동한;이한수
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.117-118
    • /
    • 2002
  • 본 연구에서는 지하수로부터 방출된 실내라돈오염을 해석하기 위한 수학적 모델에서 모델인자들의 불확실성을 고려하고 인체축적량을 정량적으로 해석하는 PBPK모델을 사용하여 호흡을 통한 라돈의 인체축적량을 보다 현실적으로 평가하려고 한다. 우선, 전에 사용한 3 구역모델을 샤워실과 화장실을 구분하는 경계가 없다는 국내실정을 감안하여 보다 현실적으로 개량한 2-구역 모델을 개발하였다. (중략)

  • PDF

Modeling the Controllable Parameters of Radon Environment System with Dose Sensitivity Analysis (실내 라돈환경계의 선량감도분석에 의한 제어매개변수 모델링)

  • Zoo, Oon-Pyo;Chang, Yi-Young;Kim, Kern-Joong
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.41-54
    • /
    • 1991
  • This paper aimed to analyse dose sensitivity to the controllable parameters of indoor radon $(^{222}Rn)$ and its decay products (Rn-D) by applying the input~output linear system theory. Physical behaviors of $^{222}Rn\;&\;Rn-D$ were analyzed in terms of $(^{222}Rn)$ gas -generation, -migation and -infiltration to indoor environments, and the performance output-function, i. e. mean dose equivalent to Tracho-Bronchial (TB) lung region, was assessed to the following extented ranges of the controllable paramenters; a) the ventilation rate $constant({\lambda}_v)\;:\;0{\sim}50[h^{-l}].\;b)$ the attachment rate $constant({\lambda}_a)\;:\;0{\sim}500[h^{-l}].\;c)$ the unattached-deposition rate constant (${\lambda}^u_d)\;:\;0-50[h-l]$. A linear input-output model was reconstructed from the original models in literatures, as follows, which was modified into the matrices consisting of 111 nodal equations; a) indoor $^{222}Rn\;&\;Rn-D$ Behaviour; Jacobi-Porstendoerfer-Bruno model.

  • PDF

A study on the reduction of indoor radon contamination (실내 라돈의 오염량 감소에 관한 연구)

  • Kim, Chang-Kyun;Choi, Jong-Hak;Kang, Jeong-Ho
    • Journal of radiological science and technology
    • /
    • v.29 no.2
    • /
    • pp.53-56
    • /
    • 2006
  • The purpose of the present study is to find ways to reduce the quantity of indoor radon contamination. The study was done from July, 2005 until December, 2005. It was found out that the easiest and most effective way to do that is to open the windows as often as possible and let the indoor air flow outside. When it is not possible to ventilate a room, the indoor radon contamination quantity can reduced by providing activated charcoal in the room. It has been proved that activated charcoal can absorb the room in the air. We need more activated charcoal in proportion to the size of the room. A further research is needed to investigate the amount of activated charcoal that will work most effectively.

  • PDF

Effective Dose Equivalent due to Inhalation of Indoor Radon-222 Daughters in Korea (한국인의 라돈-222 자핵종 호흡 실효선량당량 평가)

  • Chang, Si-Young;Ha, Chung-Woo;Lee, Byoung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 1991
  • Effective dose equivalents resulting from inhalation of indoor radon-222 daughters at 12 residential areas in Korea were assessed by a simple mathematical lung dosimetry model based on the measurements of long-term averaged radon concentrations at 340 dwellings. The long-term averaged indoor radon-222 concentrations and corresponding eqilibrium equivalent radon $concentration(EEC_{Rn})$ measured by passive time-integrating CR-39 radon cups are in the range of $33.82{\sim}61.42Bq/m^3(median\;:\;48.90Bq/m^3)$ and of $13.53{\sim}24.57Bq/m^3(median\;:\;19.55Bq/m^3)$, respectively. The effective dose equvalent conversion factor for the exposure to unit $EEC_{Rn}$ derived in this study was estimated $1.07{\times}10^{-5}mSv/Bq\;h\;m^{-3}$ for a reference adult and agreed well with those recommended by the ICRP and UNSCEAR. The annual average dose equivalent to the lung $(H_{LUNG})$ from inhalation exposure to measured $EEC_{Rn}$ was estimated to be 20.90 mSv and resulting effective dose $equivalent(H_E)$ was to be 1.25 mSv, which is about 50% of the natural radiation exposure of 2.40 mSv/y to the public reported by the UNSCEAR.

  • PDF

A Study on Distribution of Particulate and Radon Concentrations in Indoor Environment in Seoul City (서울시 일부 실내환경 중 미세먼지와 라돈농도 분포에 관한 연구)

  • 김윤신;김현탁;이철민;장기석;안진호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.365-366
    • /
    • 2000
  • 라돈은 암석이나 토양 같은 지각물질에서 발생되는 우라늄($^{238}$ U) 붕괴계열인 라듐($^{226}$ Ra)의 붕괴과정에서 생성된다. 라돈($^{222}$ Rn)은 붕괴하면서 $\alpha$방사선을 방출한다. $\alpha$ 붕괴에 의하여 $^{218}$ Po, $^{214}$ Po, $^{214}$ Bi 등의 자핵종(Radon daughter)을 생성하며, 이 과정에서 인체의 세포를 죽이거나 염색체를 손상시킬 수 있으며, 폐암의 발생 위험률을 높이는 것으로 보고되었다$^{1)}$ . 라돈은 건물의 균열, 연결부위, 혹은 배수관이나 오수간, 주변의 틈을 통해서 실내로 유입된다. (중략)

  • PDF