• Title/Summary/Keyword: 신.재생에너지

Search Result 4,695, Processing Time 0.033 seconds

Temperature and Solar Radiation Prediction Performance of High-resolution KMAPP Model in Agricultural Areas: Clear Sky Case Studies in Cheorwon and Jeonbuk Province (고해상도 규모상세화모델 KMAPP의 농업지역 기온 및 일사량 예측 성능: 맑은 날 철원 및 전북 사례 연구)

  • Shin, Seoleun;Lee, Seung-Jae;Noh, Ilseok;Kim, Soo-Hyun;So, Yun-Young;Lee, Seoyeon;Min, Byung Hoon;Kim, Kyu Rang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.312-326
    • /
    • 2020
  • Generation of weather forecasts at 100 m resolution through a statistical downscaling process was implemented by Korea Meteorological Administration Post- Processing (KMAPP) system. The KMAPP data started to be used in various industries such as hydrologic, agricultural, and renewable energy, sports, etc. Cheorwon area and Jeonbuk area have horizontal planes in a relatively wide range in Korea, where there are many complex mountainous areas. Cheorwon, which has a large number of in-situ and remotely sensed phenological data over large-scale rice paddy cultivation areas, is considered as an appropriate area for verifying KMAPP prediction performance in agricultural areas. In this study, the performance of predicting KMAPP temperature changes according to ecological changes in agricultural areas in Cheorwon was compared and verified using KMA and National Center for AgroMeteorology (NCAM) observations. Also, during the heat wave in Jeonbuk Province, solar radiation forecast was verified using Automated Synoptic Observing System (ASOS) data to review the usefulness of KMAPP forecast data as input data for application models such as livestock heat stress models. Although there is a limit to the need for more cases to be collected and selected, the improvement in post-harvest temperature forecasting performance in agricultural areas over ordinary residential areas has led to indirect guesses of the biophysical and phenological effects on forecasting accuracy. In the case of solar radiation prediction, it is expected that KMAPP data will be used in the application model as detailed regional forecast data, as it tends to be consistent with observed values, although errors are inevitable due to human activity in agricultural land and data unit conversion.

Blue Carbon Resources in the East Sea of Korea and Their Values and Potential Applications (동해안 블루카본 자원의 가치와 활용방안)

  • Yoon, Ho-Sung;Do, Jeong-Mi;Jeon, Byung Hee;Yeo, Hee-Tae;Jang, Hyeong Seok;Yang, Hee Wook;Suh, Ho Seong;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.578-587
    • /
    • 2022
  • Korea, as the world's 7th largest emitter of greenhouse gases, has raised the national greenhouse gas reduction target as international regulations have been strengthened. As it is possible to utilize coastal and marine ecosystems as important nature-based solutions (NbS) for implementing climate change mitigation or adaptation plans, the blue carbon ecosystem is now receiving attention. Blue carbon refers to carbon that is deposited and stored for a long period after carbon dioxide (CO2) is absorbed as biomass by coastal ecosystems or oceanic ecosystems through photosynthesis. Currently, there are only three blue carbon ecosystems officially recognized by the Intergovernmental Panel on Climate Change (IPCC): mangroves, salt marshes, and seagrasses. However, the results of new research on the high CO2 sequestration and storage capacity of various new blue carbon sinks, such as seaweeds, microalgae, coral reefs, and non-vegetated tidal flats, have been continuously reported to the academic community recently. The possibility of IPCC international accreditation is gradually increasing through scientific verification related to calculations. In this review, the current status and potential value of seaweeds, seagrass fields, and non-vegetated tidal flats, which are sources of blue carbon on the east coast, are discussed. This paper confirms that seaweed resources are the most effective NbS in the East Sea of Korea. In addition, we would like to suggest the direction of research and development (R&D) and utilization so that new blue carbon sinks can obtain international IPCC certification in the near future.

A Study on the Landscape Cognition of Wind Power Plant in Social Media (소셜미디어에 나타난 풍력발전시설의 경관 인식 연구)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.69-79
    • /
    • 2022
  • This study aims to assess the current understanding of the landscape of wind power facilities as renewable energy sources that supply sightseeing, tourism, and other opportunities. Therefore, social media data related to the landscape of wind power facilities experienced by visitors from different regions was analyzed. The analysis results showed that the common characteristics of the landscape of wind power facilities are based on the scale of wind power facilities, the distance between overlook points of wind power facilities, the visual openness of the wind power facilities from the overlook points, and the terrain where the wind power facilities are located. In addition, the preference for wind power facilities is higher in places where the shape of wind power facilities and the surrounding landscape can be clearly seen- flat ground or the sea are considered better landscapes. Negative keywords about the landscape appear on Gade Mountain in Taibai, Meifeng Mountain in Taibai, Taiqi Mountain, and Gyeongju Wind Power Generation Facilities on Gyeongshang Road in Gangwon. The keyword 'negation' occurs when looking at wind power facilities at close range. Because of the high angle of the view, viewers can feel overwhelmed seeing the size of the facility and the ridge simultaneously, feeling psychological pressure. On the contrary, positive landscape adjectives are obtained from wind power facilities on flat ground or the sea. Visitors think that the visual volume of the landscape is fully ensured on flat ground or the sea, and it is a symbolic element that can represent the site. This study analyzes landscape awareness based on the opinions of visitors who have experienced wind power facilities. However, wind power facilities are built in different areas. Therefore, landscape characteristics are different, and there are many variables, such as viewpoints and observers, so the research results are difficult to popularize and have limitations. In recent years, landscape damage due to the construction of wind power facilities has become a hot issue, and the domestic methods of landscape evaluation of wind power facilities are unsatisfactory. Therefore, when evaluating the landscape of wind power facilities, the scale of wind power facilities, the inherent natural characteristics of the area where wind power facilities are set up, and the distance between wind power facilities and overlook points are important elements to consider. In addition, wind power facilities are set in the natural environment, which needs to be protected. Therefore, from the landscape perspective, it is necessary to study the landscape of wind power facilities and the surrounding environment.

State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter (이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정)

  • Hong-Ryun Jung;Jun Ho Kim;Seung Woo Kim;Jong Hoon Kim;Eun Jin Kang;Jeong Woo Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Along with the high interest in electric vehicles and new renewable energy, there is a growing demand to apply lithium-ion batteries in the construction equipment industry. The capacity of heavy construction equipment that performs various tasks at construction sites is rapidly decreasing. Therefore, it is essential to accurately predict the state of batteries such as SOC (State of Charge) and SOH (State of Health). In this paper, the errors between actual electrochemical measurement data and estimated data were compared using the Dual Extended Kalman Filter (DEKF) algorithm that can estimate SOC and SOH at the same time. The prediction of battery charge state was analyzed by measuring OCV at SOC 5% intervals under 0.2C-rate conditions after the battery cell was fully charged, and the degradation state of the battery was predicted after 50 cycles of aging tests under various C-rate (0.2, 0.3, 0.5, 1.0, 1.5C rate) conditions. It was confirmed that the SOC and SOH estimation errors using DEKF tended to increase as the C-rate increased. It was confirmed that the SOC estimation using DEKF showed less than 6% at 0.2, 0.5, and 1C-rate. In addition, it was confirmed that the SOH estimation results showed good performance within the maximum error of 1.0% and 1.3% at 0.2 and 0.3C-rate, respectively. Also, it was confirmed that the estimation error also increased from 1.5% to 2% as the C-rate increased from 0.5 to 1.5C-rate. However, this result shows that all SOH estimation results using DEKF were excellent within about 2%.

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.