• Title/Summary/Keyword: 신호 최적화

Search Result 947, Processing Time 0.032 seconds

An Optimization Technique in Memory System Performance for RealTime Embedded Systems (실시간 임베디드 시스템을 위한 메모리 시스템 성능 최적화 기법)

  • Yongin Kwon;Doosan Cho;Jongwon Lee;Yongjoo Kim;Jonghee Youn;Sanghyun Park;Yunheung Paek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.882-884
    • /
    • 2008
  • 통상 하드웨어 캐시의 크기보다 수십에서 수백배 큰 크기의 데이타를 랜덤하게 접근하는 경우 낮은 메모리 접근 지역성(locality)에 기인하여 캐시 메모리 성능이 급격히 저하되는 문제를 야기한다. 예를 들면, 현재 보편적으로 사용되고 있는 차량용 General Positioning System (GPS) 프로그램의 경우 최대 32개의 위성으로부터 데이터를 받아 수신단의 위치를 계산하는 부분이 핵심 모듈중의 하나 이며, 이는 전체 성능의 50% 이상을 차지한다. 이러한 모듈에서는 위성 신호를 실시간으로 받아 버퍼 메모리에 저장하며, 이때 필요한 데이터가 순차적으로 저장되지 못하기 때문에 랜덤하게 데이터를 읽어 사용하게 된다. 결과적으로 낮은 지역성에 기인하여 실시간 (realtime)안에 데이터 처리를 하기 어려운 문제에 직면하게 된다. 통상의 통신 응용의 알고리즘 상에 내재된(inherited) 낮은 메모리 접근 지역성을 개선하는 것은 알고리즘 상에서의 접근을 요구한다. 이는 높은 비용이 필요함으로 본 연구에서는 사용되는 데이터 구조를 변환하여 지역성을 높이는 방향으로 접근하였다. 결과적으로 핵심 모듈에서 2배, 전체 시스템 성능에서 14%를 개선할 수 있었다.

Performance Evaluation of U-net Deep Learning Model for Noise Reduction according to Various Hyper Parameters in Lung CT Images (폐 CT 영상에서의 노이즈 감소를 위한 U-net 딥러닝 모델의 다양한 학습 파라미터 적용에 따른 성능 평가)

  • Min-Gwan Lee;Chanrok Park
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.709-715
    • /
    • 2023
  • In this study, the performance evaluation of image quality for noise reduction was implemented using the U-net deep learning architecture in computed tomography (CT) images. In order to generate input data, the Gaussian noise was applied to ground truth (GT) data, and datasets were consisted of 8:1:1 ratio of train, validation, and test sets among 1300 CT images. The Adagrad, Adam, and AdamW were used as optimizer function, and 10, 50 and 100 times for number of epochs were applied. In addition, learning rates of 0.01, 0.001, and 0.0001 were applied using the U-net deep learning model to compare the output image quality. To analyze the quantitative values, the peak signal to noise ratio (PSNR) and coefficient of variation (COV) were calculated. Based on the results, deep learning model was useful for noise reduction. We suggested that optimized hyper parameters for noise reduction in CT images were AdamW optimizer function, 100 times number of epochs and 0.0001 learning rates.

Study on the Positioning Method using BLE for Location based AIoT Service (위치 기반 지능형 사물인터넷 서비스를 위한 BLE 측위 방법에 관한 연구)

  • Ho-Deok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • Smart City, a key application area of the AIoT (Artificial Intelligence of Things), provides various services in safety, security, and healthcare sectors through location tracking and location-based services. an IPS (Indoor Positioning System) is required to implement location-based services, and wireless communication technologies such as WiFi, UWB (Ultra-wideband), and BLE (Bluetooth Low Energy) are being applied. BLE, which enables data transmission and reception with low power consumption, can be applied to various IoT devices such as sensors and beacons at a low cost, making it one of the most suitable wireless communication technologies for indoor positioning. BLE utilizes the RSSI (Received Signal Strength Indicator) to estimate the distance, but due to the influence of multipath fading, which causes variations in signal strength, it results in an error of several meters. In this paper, we conducted research on a path loss model that can be applied to BLE IPS for proximity services, and confirmed that optimizing the free space propagation loss coefficient can reduce the distance error between the Tx and Rx devices.

A Study on Robust Speech Emotion Feature Extraction Under the Mobile Communication Environment (이동통신 환경에서 강인한 음성 감성특징 추출에 대한 연구)

  • Cho Youn-Ho;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.269-276
    • /
    • 2006
  • In this paper, we propose an emotion recognition system that can discriminate human emotional state into neutral or anger from the speech captured by a cellular-phone in real time. In general. the speech through the mobile network contains environment noise and network noise, thus it can causes serious System performance degradation due to the distortion in emotional features of the query speech. In order to minimize the effect of these noise and so improve the system performance, we adopt a simple MA (Moving Average) filter which has relatively simple structure and low computational complexity, to alleviate the distortion in the emotional feature vector. Then a SFS (Sequential Forward Selection) feature optimization method is implemented to further improve and stabilize the system performance. Two pattern recognition method such as k-NN and SVM is compared for emotional state classification. The experimental results indicate that the proposed method provides very stable and successful emotional classification performance such as 86.5%. so that it will be very useful in application areas such as customer call-center.

Design and Amplitude Modulation Characteristics with Bias of Class J Power Amplifier for CSB (CSB용 J급 전력증폭기 설계 및 바이어스에 따른 진폭 변조 특성)

  • Su-kyung Kim;Kyung-Heon Koo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.849-854
    • /
    • 2023
  • In this paper, a high-efficiency power amplifier was designed by applying the operating point Class J using LDMOS(laterally diffused metal oxide semiconductor) and optimizing the output matching circuit so that the second harmonic impedance becomes the reactance impedance. The designed power amplifier has a frequency of 108 ~ 110 MHz, Characteristics of PAE(power added efficiency) is 71.5% at PSAT output (54.5 dBm), 55.5% at P1dB output (51.5 dBm), and 24.38% at 45 dBm. The CSB(carrier with sideband) amplifier, which is the reference signal in the spatial modulation method, has an operating output of 45 dBm ~ 35 dBm, and linear SDM(sum in the depth of modulation) characteristics(40% ± 0.3%) were obtained. We measure the characteristics in amplitude modulation according to the bias operating point of the power amplifier for CSB and propose the optimal operating point to obtain linear modulation characteristics.

Optimizing Wavelet in Noise Canceler by Deep Learning Based on DWT (DWT 기반 딥러닝 잡음소거기에서 웨이블릿 최적화)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.113-118
    • /
    • 2024
  • In this paper, we propose an optimal wavelet in a system for canceling background noise of acoustic signals. This system performed Discrete Wavelet Transform(DWT) instead of the existing Short Time Fourier Transform(STFT) and then improved noise cancellation performance through a deep learning process. DWT functions as a multi-resolution band-pass filter and obtains transformation parameters by time-shifting the parent wavelet at each level and using several wavelets whose sizes are scaled. Here, the noise cancellation performance of several wavelets was tested to select the most suitable mother wavelet for analyzing the speech. In this study, to verify the performance of the noise cancellation system for various wavelets, a simulation program using Tensorflow and Keras libraries was created and simulation experiments were performed for the four most commonly used wavelets. As a result of the experiment, the case of using Haar or Daubechies wavelets showed the best noise cancellation performance, and the mean square error(MSE) was significantly improved compared to the case of using other wavelets.

Realization of Folded Ridge Waveguide Using Y-type Structure and Transition of Folded Ridge Waveguide (Y형 구조물을 통해 구현된 접힌 Ridge 도파관 및 접힌 Ridge 도파관의 트랜지션)

  • Tae-Soon Yun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2024
  • In this paper, in order to realize lower cut-off frequency of the waveguide, the folded Ridge waveguide (FRWG) is suggested by alternating T-shape structure in the conventional folded waveguide with Y-shape structure. Suggested FRWG can be equivalent by the reverse Ridge waveguide. As the height of side of the FRWG is lower, the width of side is increased. Therefore, the cut-off frequency of the FRWG can be decreased more than half compared with conventional waveguide. The FRWG is designed with the length, height, and width of Y-shape structure of 40mm, 20mm, and 2mm, respectively. Designed FRWG has the cut-off frequency of the 1.996GHz. Also, the transition between the FRWG and SMA connector is designed. The transition is optimized by the capacitance of the signal line of the connector. Its result shows the VSWR under 2:1 in the band of 2.064 ~ 3.050 GHz. Suggested FRWG can be applied with miniaturization of various waveguide devices.

Shielding Design Optimization of the HANARO Cold Neutron Triple-Axis Spectrometer and Radiation Dose Measurement (냉중성자 삼축분광장치의 차폐능 최적화 설계 및 선량 측정)

  • Ryu, Ji Myung;Hong, Kwang Pyo;Park, J.M. Sungil;Choi, Young Hyeon;Lee, Kye Hong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.21-29
    • /
    • 2014
  • A new cold neutron triple-axis spectrometer (Cold-TAS) was recently constructed at the 30 MWth research reactor, HANARO. The spectrometer, which is composed of neutron optical components and radiation shield, required a redesign of the segmented monochromator shield due to the lack of adequate support of its weight. To shed some weight, lowering the height of the segmented shield was suggested while adding more radiation shield to the top cover of the monochromator chamber. To investigate the radiological effect of such change, we performed MCNPX simulations of a few different configurations of the Cold-TAS monochromator shield and obtained neutron and photon intensities at 5 reference points just outside the shield. Reducing the 35% of the height of the segmented shield and locating lead 10 cm from the bottom of the top cover made of polyethylene was shown to perform just as well as the original configuration as radiation shield excepting gamma flux at two points. Using gamma map by MCNPX, it was checked that is distribution of gamma. Increased flux had direction to the top and it had longer distance from top of segmented shield. However, because of reducing the 35% of the height, height of dissipated gamma was lower than original geometry. Reducing the 35% of the height of the segmented shield and locating lead 10cm from the bottom of the top cover was selected. After changing geometry, radiation dose was measured by TLD for confirming tester's safety at any condition. Neutron(0.21 ${\mu}Svhr^{-1}$) and gamma(3.69 ${\mu}Svhr^{-1}$) radiation dose were satisfied standard(6.25 ${\mu}Svhr^{-1}$).

A 10b 50MS/s Low-Power Skinny-Type 0.13um CMOS ADC for CIS Applications (CIS 응용을 위해 제한된 폭을 가지는 10비트 50MS/s 저 전력 0.13um CMOS ADC)

  • Song, Jung-Eun;Hwang, Dong-Hyun;Hwang, Won-Seok;Kim, Kwang-Soo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • This work proposes a skinny-type 10b 50MS/s 0.13um CMOS three-step pipeline ADC for CIS applications. Analog circuits for CIS applications commonly employ a high supply voltage to acquire a sufficiently acceptable dynamic range, while digital circuits use a low supply voltage to minimize power consumption. The proposed ADC converts analog signals in a wide-swing range to low voltage-based digital data using both of the two supply voltages. An op-amp sharing technique employed in residue amplifiers properly controls currents depending on the amplification mode of each pipeline stage, optimizes the performance of op-amps, and improves the power efficiency. In three FLASH ADCs, the number of input stages are reduced in half by the interpolation technique while each comparator consists of only a latch with low kick-back noise based on pull-down switches to separate the input nodes and output nodes. Reference circuits achieve a required settling time only with on-chip low-power drivers and digital correction logic has two kinds of level shifter depending on signal-voltage levels to be processed. The prototype ADC in a 0.13um CMOS to support 0.35um thick-gate-oxide transistors demonstrates the measured DNL and INL within 0.42LSB and 1.19LSB, respectively. The ADC shows a maximum SNDR of 55.4dB and a maximum SFDR of 68.7dB at 50MS/s, respectively. The ADC with an active die area of 0.53$mm^2$ consumes 15.6mW at 50MS/s with an analog voltage of 2.0V and two digital voltages of 2.8V ($=D_H$) and 1.2V ($=D_L$).

A 1.1V 12b 100MS/s 0.43㎟ ADC based on a low-voltage gain-boosting amplifier in a 45nm CMOS technology (45nm CMOS 공정기술에 최적화된 저전압용 이득-부스팅 증폭기 기반의 1.1V 12b 100MS/s 0.43㎟ ADC)

  • An, Tai-Ji;Park, Jun-Sang;Roh, Ji-Hyun;Lee, Mun-Kyo;Nah, Sun-Phil;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.122-130
    • /
    • 2013
  • This work proposes a 12b 100MS/s 45nm CMOS four-step pipeline ADC for high-speed digital communication systems requiring high resolution, low power, and small size. The input SHA employs a gate-bootstrapping circuit to sample wide-band input signals with an accuracy of 12 bits or more. The input SHA and MDACs adopt two-stage op-amps with a gain-boosting technique to achieve the required DC gain and high signal swing range. In addition, cascode and Miller frequency-compensation techniques are selectively used for wide bandwidth and stable signal settling. The cascode current mirror minimizes current mismatch by channel length modulation and supply variation. The finger width of current mirrors and amplifiers is laid out in the same size to reduce device mismatch. The proposed supply- and temperature-insensitive current and voltage references are implemented on chip with optional off-chip reference voltages for various system applications. The prototype ADC in a 45nm CMOS demonstrates the measured DNL and INL within 0.88LSB and 1.46LSB, respectively. The ADC shows a maximum SNDR of 61.0dB and a maximum SFDR of 74.9dB at 100MS/s, respectively. The ADC with an active die area of $0.43mm^2$ consumes 29.8mW at 100MS/s and a 1.1V supply.