텍스쳐 분석은 장면 분할, 물체 인식, 모양과 깊이 인식 등의 많은 영상 처리 분야에서 중요한 기술 중의 하나이다. 그러나 실영상에 포함된 다양한 텍스쳐 성분에 대해서 보편적으로 적용 가능한 효율적인 방법들에 대한 연구는 미흡한 실정이다. 본 논문에서는 텍스쳐 인식을 위해서 비교사 학습 방법에 기반 한 효율적인 텍스쳐 분석 기법을 제안한다. 제안된 방법은 텍스쳐 영상이 지닌 방향특징 정보로서 각(angle)과 강도(power)를 추출하여 자기 조직화 신경회로망에 의해서 블록기반으로 군집화(clustering)된다. 비교사적 군집 결과는 통합(merging)과 불림(dilation) 과정을 통해서 영상에 내재된 텍스쳐 성분의 분할을 수행한다. 제안된 시스템의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 적용한 후 그 유효성을 보인다.
자동차 번호판은 조명과 카메라에 따라 영상에서 다양한 형태로 나타나고 영상내의 잡음으로 인해 알고리즘 방식으로 자동차 번호판을 인식하기가 쉽지 않다. 이러한 문제에 적합한 해결 방법으로 본 논문에서는 학습 기반의 자동차 번호판 인식 시스템을 제안한다. 제안한 시스템은 자동차 검출 모듈, 번호판 추출 모듈, 번호판 문자인식 모듈로 구성된다. 본 논문에서는 자동차 번호판 추출을 위해서 시간-지연 신경망(Time-Delay Neural Networks : TDNN)과 번호판 인식을 위해서 일반적인 신경망보다 일반화 성능이 뛰어난 서포트 벡터 머신(Support Vector Machines : SVMs)을 시스템에 적용한다. 주차장과 톨케이트에서 여러 시간대의 움직이는 자동차 영상들을 실험한 결과, 자동차 검출율은 100%, 번호판 추출율은 97.5%, 번호판 문자 인식율은 97.2%의 성능을 내었고, 전체 시스템 성능은 94.7%이며 처리 시간은 약 1초 미만이다. 따라서 본 논문에서 제안한 시스템은 실세계에서 유용하게 적용될 수 있다.
본 논문에서는 얼굴의 구조적 특성과 누적 히스토그램을 이용하여 다양한 정보를 포함하고 있는 얼굴의 6가지 표정을 인식하는 알고리즘을 기술하였다. 표정 인식을 위해 특징점 추출 전처리 과정으로 입력 영상으로부터 에지 추출, 이진화, 잡음 제거, 모폴로지 기법을 이용한 팽창, 레이블링 순으로 적용한다. 본 논문은 레이블 영역의 크기를 이용해 1차 특징점 영역을 추출하고 가로방향의 누적 히스토그램 값과 대칭성의 구조적인 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확하게 눈과 입을 찾아낸다. 또한 표정 변화를 정량적으로 측정하기 위해 추출된 특징점들의 눈과 입의 크기, 미간 사이의 거리 그리고 눈에서 입까지의 거리 정보를 이용하여 표정을 인식한다. 1, 2차 특징점 추출 과정을 거치므로 추출률이 매우 높고 특징점들의 표정에 따른 변화 거리를 이용하므로 표정 인식률이 높다. 본 논문은 안경 착용 영상과 같이 복잡한 얼굴 영상에서도 표정 인식이 가능하다.
본 논문에서는, 웨이브렛 변환과 잡음 섞인 숫자 영상에 대한 최적화 인식 훈련기법을 사용한 다계층 신경망을 제안하고, 이 시스템을 아라비아숫자 인식에 적용한다. 웨이브렛 변환을 이용해 원 영상 정보의 중요한 부분은 최대한 보존하면서 입력벡터의 크기를 줄임으로써 신경망의 노드 수와 학습 수렴시간이 줄어들도록 하였고, 최적화 인식 훈련기법은 데이터의 잡음을 점차적으로 높여가면서 훈련벡터에 적용, 인식률의 변화에 대해 살펴보았다. 잡음이 섞인 숫자 영상의 인식율을 높이기 위해 원 영상에 0, 10, 20, 30, 40, 50㏈의 잡음을 섞은 영상을 훈련에 함께 사용하였다. 테스트 영상에 잡음이 30∼50㏈정도 섞였을 경우에는 원 영상만을 훈련에 이용했을 패와 잡음이 섞인 영상을 이용하여 훈련시켰을 경우에 인식율의 차이가 별로 없지만, 0∼20㏈정도 섞인 영상을 테스트에 사용할때에는 0, 10, 20, 30, 40 , 50㏈의 잡음이 있는 영상을 훈련에 사용했을 때가 원 영상만을 훈련에 이용했을 경우에 비해 인식율이 9% 향상된다.
인간과 컴퓨터간의 상호교류 하는데 있어서 감정 인식은 필수라 하겠다. 그래서 본 논문에서는 음성 신호 및 얼굴 영상을 BL(Bayesian Learning)과 PCA(Principal Component Analysis)에 적용하여 5가지 감정 (Normal, Happy, Sad, Anger, Surprise) 으로 패턴 분류하였다. 그리고 각각 신호의 단점을 보완하고 인식률을 높이기 위해 결정 융합 방법과 특징 융합 방법을 이용하여 감정융합을 실행하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 융합하였으며, 특정 융합 방법은 SFS(Sequential Forward Selection)특정 선택 방법을 통해 우수한 특정들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 융합을 실행하였다.
지문인식 알고리즘 구현에 있어서 일반적인 전처리 과정을 거쳐, 특징추출시 본 논문에서는 방향성이 추출된 영상에서 블록을 형성하여 각 블록에서의 방향성 특징들을 인공지능 기법의 한 분야인 신경회로망의 입력패턴으로 사용하여 특이점 추출을 수행했으며, 이를 바탕으로 PC없이 독립적으로 동작할 수 있는 지문인식 신호처리보드를 설계하여 그 신뢰성을 테스트한 결과 충분히 독립적으로 동작할 수 있음을 입증하였다.
음성인식 시스템과 입술독해 시스템을 결합한 하여 음향학적 잡음에 대하여 안정된 성능을 갖는 바이모달(bimodal) 시스템을 구현한다. 바이모달 시스템의 성능은 두 인식 시스템의 성능뿐만 아니라 입력 신호의 끝점검출 성능에도 크게 영향을 받는다. 본 논문에서는 음성신호와 영상신호에서 끝점을 자각 자동 검출하여 입력 음성신호로부터 음성신호에서 추정한 신호대잡음비(signal-to-noise ratio: SNR)로 두 끝점검출 결과를 선택하는 방법을 제안한다. 즉 낮은 SNR에서는 영상신호로부터 검출된 끝점을 선택하고 높은 SNR에서는 음성신호로부터 검출된 끝점을 선택함으로써 음향학적 잡음에 대하여 견실하게 끝점을 검출한다. 제안한 끝점검출 방법이 적용된 바이모달 시스템이 강한 음향학적 잡음에 대하여 만족스러운 인식성능을 나타냄을 실험견과에서 확인할 수 있다.
본 시스템은 어린이보호구역에 발생하는 차량사고가 불법주정차된 차량으로 인한 사각지대에 의해 발생되는 것에 착안하여 보행자를 인식하여 운전자들에게 알려 안전운전을 유도하여 사고를 예방해 주는 시스템이다 본 시스템은 영상인식장치, 경광장치, 중계장치, 차량 내 경고장치, 원격 트래픽 경고 수신기로 구성되어 있으며 영상인식장치가 edge-TPU 장치를 활용하여 카메라로부터 입력받은 영상을 모바일넷 기반의 딥러닝으로 처리하여 보행자, 차량, 그밖의 물체를 인식한다. 보행자가 인식되면 외부에서 경광장치가 발광하여 신호를 보내고, 중계장치를 통해 차량 내 경고장치로 보행자 경고 신호를 보낸다. 실험 결과 영상인식을 통해 보행자와 차량을 분류 인식할 수 있음을 확인하였다. 이러한 시스템은 어린이 보호구역에서 발생할 수 있는 교통사고를 방지하기 위해 효과적임을 확인할 수 있었다.
본 논문에서는 보안시스템에 적용할 수 있는 얼굴인식 알고리즘을 제안하였다 얼굴인식을 위해 기존에는 얼굴특징의 거리와 각도를 이용한데 반해, 제안한 방법에서는 명암영상을 직접적인 입력으로 사용하고, 기준영상과 입력영상의 두 염색체를 비교하여 적응도가 가장 좋은 개체를 선택하는 유전자 알고리즘을 사용하였고, 모의실험을 통해 성능을 검증하였다.
본 논문에서는 차량 영상의 수평 및 수직 명암 값 변화 정보를 이용하여 번호판 영역을 추출하고 원형 패턴 벡터를 이용하여 번호판 내용을 인식하는 알고리즘에 관해 기술하였다. 제안된 알고리즘에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 다른 영역보다 밀집도가 높다는 특성을 이용하여 수평 및 수직 명암도 변화값을 구하여 차량영상에서 번호판 영역을 추출하며 상당히 어둡거나 밝게 입력된 영상에도 동일한 인식 성능을 얻기 위하여 밝기 보정을 수행한다. 또한, 입력 문자의 크기, 이동 및 회전에 무관한 특성을 추출을 위해 원형 패턴 벡터를 이용하여 차량 번호를 인식하는 알고리즘을 제안하였다. 제안한 방법들을 적용한 결과 계산 속도가 훨씬 빠르며, 차량 번호판의 크기에 관계없이, 또한 잡음에 크게 영향을 받지 않으면서 번호판 추출이 정확하여 실시간 처리의 가능성을 제시하였을 뿐만 아니라 번호판 영역이 불투명하거나 불규칙한 조명 상태에서도 검출이 가능하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.