• Title/Summary/Keyword: 신호위반

Search Result 82, Processing Time 0.028 seconds

A Car License Plate Recognition Using Morphological Characteristic, Difference Operator and ART2 Algorithm (형태학적 특징 및 차 연산과 ART2 알고리즘을 이용한 차량 번호판 인식)

  • Kang, Moo-Jin;Kim, Jae-Kun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.431-435
    • /
    • 2008
  • 2006년 11월 이후 신 차량 번호판 등장 후, 신 차량 번호판과 구 차량 번호판이 혼합되어 있다. 이에 따라 속도위반, 신호위반 단속, 무인 주차관리 시스템, 범죄 및 도주 차량 검거, 고속도로 톨게이트에서 통행료 지불로 인한 교통 체증현상을 해소하기 위한 자동 요금 징수와 같은 다양한 경우에서 자동차 번호판의 특징에 맞는 인식 시스템이 요구되고 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 형태학적 특징 및 차 연산과 ART2 알고리즘을 이용한 차량 번호판 인식 방법을 제안한다. 무인 카메라에서 획득된 차량 번호판 영상에서 차 연산을 이용하여 에지를 추출한 후에 블록 이진화를 한다. 이진화 된 차량 영상에서 신 구 차량 번호판의 형태학적 특성을 8방향 윤곽선 추적 알고리즘에 적용하여 잡음 영역을 제거하고, 차량의 번호판 영역을 추출한다 추출된 번호판 영역에 대하여 평균 이진화와 최대 최소 이진화를 적용하여 번호판의 개별 영역에 대한 형태학적 특성을 고려하여 잡음을 제거하고, Labeling 알고리즘을 적용하여 개별 문자를 추출한 후에 결합한다. 이렇게 분류된 개별 문자 및 숫자 코드를 ART2 알고리즘에 적용하여 학습 및 인식을 한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 녹색 번호판과 흰색 번호판 이미지 각각 100장을 대상으로 실험한 결과, 제시 된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.

  • PDF

A New Car License Plate Recognition Using Morphological Characteristic and Fuzzy ART Algorithm (형태학적 특징과 퍼지 ART 알고리즘을 이용한 신 차량 번호판 인식)

  • Kang, Hyo-Joo;Kim, Mi-Jeong;Kang, Hye-Min;Park, Choong-Shik;Lee, Jong-Hee;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.413-417
    • /
    • 2007
  • 2006년 11월 이후 신 차량 번호판 등장 후, 신 차량 번호판 차량이 꾸준히 증가하고 있다. 이에 따라 속도위반, 신호위반 단속, 무인 주차 관리 시스템, 범죄 및 도주 차량 검거, 고속도로 톨게이트에서 통행료 지불로 인한 교통 체증현상을 해소하기 위한 자동 요금 징수와 같은 다양한 경우에서 신 자동차 번호판의 특징에 맞는 인식 시스템이 요구되고 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 지능형 신 자동차 번호판 인식 방법을 제안한다. 무인 카메라에서 획득된 신 차량 영상을 그레이 레벨로 변환한 후에 블록 이진화한다. 블록 이진화된 차량 영상을 대상으로 차량의 형태학적 특징을 적용하여 잡음을 제거한 후, 번호판 영역을 추출한다. 추출된 번호판 영역에 대해 Grassfire 알고리즘을 적용하여 개별 코드를 추출한다. 차량 번호판을 인식하기 위하여 추출된 개별 코드를 퍼지 ART 알고리즘을 적용하여 학습 및 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 100장의 차량 영상을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.

  • PDF

Effect Analysis of Public Data-Based Automatic Traffic Enforcement Camera Installation Using the Comparison Group Method (비교그룹방법을 이용한 공공데이터 기반 교통단속장비 사고감소 효과분석)

  • Yunseob Lee;Yohee Han;Youngchan Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.168-181
    • /
    • 2023
  • This study analyzed the effects of traffic enforcement on accident reduction. The results revealed a significant reduction in both overall accidents (28.53%) and fatal accidents (39.44%). Notably, enforcement equipment targeting speed limits of 30 km/h and 50 km/h demonstrated similar accident reduction rates of 42.23% and 25.85%, respectively. However, variations were observed based on accident types and types of traffic violations. Therefore, it is evident that enforcement equipment yields distinct accident reduction effects depending on speed limits and types of traffic accidents. This finding underscores the potential for making informed policy decisions to enhance traffic safety measures.

Intelligent Recognition System of Car License Plate (지능형 차량 번호판 인식 시스템)

  • Kang, Moo-Jiin;Kang, Hye-Min;Woo, Young-Woon;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.337-342
    • /
    • 2008
  • 최근 들어 기존의 녹색 바탕 차량 번호판에서, 흰색 바탕의 신 차량 번호판으로 교체되고 있다. 하지만 아직 기존 차량 번호판이 신 차량 번호판으로 전면 교체되지 않아 두 번호판 모두 사용되고 있다. 따라서 주차관리 시스템, 속도위반, 신호 위반 등 무인 카메라를 이용한 시스템에서, 기존 차량 번호판과 신 차량 번호판의 특징에 맞는 인식 시스템이 요구된다. 본 논문에서는 이러한 문제를 해결하기 위해 기존 차량 번호판과 신 차량 번호판을 통합한, 지능형 차량 번호판 인식 시스템을 제안한다. 무인 카메라에서 획득된 차량 영상에서 번호판의 색상 정보를 이용하여 기존 차량 번호판과 신 차량 번호판을 구분한다. 기존 차량 번호판인 경우에는 HSI 컬러 공간을 이용하여 이진화를 적용하며, 신 차량 번호판인 경우에는 블록 이진화를 적용한다. 이진화된 영상을 대상으로 차량의 형태학적 특징을 이용하여 잡음을 제거한 후, 차량 번호판 영역을 추출한다. 추출된 차량 번호판 영역에 대해 Labeling 알고리즘을 적용하여 개별 문자를 추출한다. 추출된 개별 문자는 FCM 알고리즘을 적용하여 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 160장의 기존 차량 영상과 100장의 신 차량 영상을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.

  • PDF

The Study on the Correlation between Traffic Signal Location and Stop Line Observance (신호기위치와 정지선 준수율과의 관계 연구)

  • Jung, Kwang-Bok;Kim, Jin-Tae;Lee, Yong-Taek;Lee, Don-Joo
    • International Journal of Highway Engineering
    • /
    • v.9 no.1 s.31
    • /
    • pp.29-38
    • /
    • 2007
  • The Korea National Police Agency launched a campaign to encourage drivers in stop line observance and to discourage stop line violation by intensively imposing fines. It was to increase stop line observance of drivers and thus traffic safety. According to statistics, the stop line observance rate was increased over 80 % of drivers during the campaign but regressed to the past after the campaign. This paper delivers the effect of the location of traffic signal lights on driver's stop line observance and develops a guideline to improve highway traffic environment in long terms. Statistical tests conducted based on field data showed that the drivers' stop line observance increases when traffic signal lights are closely installed from a stop line. It was proposed from the study that traffic signal lights be installed $10{\sim}20m$ from a stop line.

  • PDF

Development of a Driver Safety Information Service Model Using Point Detectors at Signalized Intersections (지점검지자료 기반 신호교차로 운전자 안전서비스 개발)

  • Jang, Jeong-A;Choe, Gi-Ju;Mun, Yeong-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.113-124
    • /
    • 2009
  • This paper suggests a new approach for providing information for driver safety at signalized intersections. Particularly dangerous situations at signalized intersections such as red-light violations, accelerating through yellow intervals, red-light running, and stopping abruptly due to the dilemma zone problem are considered in this study. This paper presents the development of a dangerous vehicle determination algorithm by collecting real-time vehicle speeds and times from multiple point detectors when the vehicles are traveling during phase-change. For an evaluation of this algorithm, VISSIM is used to perform a real-time multiple detection situation by changing the input data such as various inflow-volume, design speed change, driver perception, and response time. As a result the correct-classification rate is approximately 98.5% and the prediction rate of the algorithm is approximately 88.5%. This paper shows the sensitivity results by changing the input data. This result showed that the new approach can be used to improve safety for signalized intersections.

Analysis of Ambulance Traffic Accident During Driving (국내 구급차량의 운행 중 사고 분석에 관한 조사 연구)

  • Shin, Dong-min;Yoon, Byung-gil;Han, Yong-taek
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.130-137
    • /
    • 2016
  • The purpose of this study is to investigate the circumstances surrounding collisions involving ambulances with an aim to improving the safe operation of emergency services. Collisions are relatively common within paramedic emergency services. We analyzed the time, injury site, and any other specific factors of 908 collisions occurring within four cities. Within our study 29.6% of paramedics have been involved in accidents while responding to an emergency call, with the main cause of the accident being signal violation (35.7%), and is the other party's negligence (22.2%). 92.1% of these accidents occurred while the emergency lights were being operated. XX% of accidents took place in the afternoon, while xx% took place within the hours of xx:xx and xx:xx, during which time there is generally lower levels of traffic, which can cause severe brain and neck damage of 14.4% but the other part is 62.1%. (Ed note; this is not clear at all. 14.4% of collisions resulted in severe head and neck injuries, while 23.5% of collisions resulted in no injury. According to the respondents, defensive driving (xx%), observance of traffic laws (xx%), safe driving habits (xx%)to paramedics were the most critical factors in evading collision. Signal passes were identified as the most common cause of collision (70.1%). Although the majority of collisions occurred while the emergency lights were operational, the damage can cause severe damage at the time of accident occurred.

Improved Phase Synthesis for Parametric Stereo Audio Coding (파라메트릭 스테레오 오디오 부호화를 위한 향상된 위상 합성 기법)

  • Hyun, Dong-Il;Park, Young-Cheol;Youn, Dae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.184-190
    • /
    • 2013
  • Parametric stereo(PS) audio coding is a specific version of spatial audio coding. In this paper, the problem due to the conventional synthesis of phase differences. In the conventional upmix matrix, phase differences are synthesized not only on downmix signal but also ambient signal, which violates the assumption that the ambient signals are anti-phased. Deterioration due to the phase synthesis is analyzed, especially, for low interchannel correlation. To solve this problem, new upmix matrix is proposed, which synthesizes phase differences only on downmix signal. The performance of the proposed upmix matrix is verified by the subjective listening tests.

Kubernetes-based Framework for Improving Traffic Light Recognition Performance: Convergence Vision AI System based on YOLOv5 and C-RNN with Visual Attention (신호등 인식 성능 향상을 위한 쿠버네티스 기반의 프레임워크: YOLOv5와 Visual Attention을 적용한 C-RNN의 융합 Vision AI 시스템)

  • Cho, Hyoung-Seo;Lee, Min-Jung;Han, Yeon-Jee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.851-853
    • /
    • 2022
  • 고령화로 인해 65세 이상 운전자가 급증하며 고령운전자의 교통사고 비율이 증가함에 따라 시급한 사회 문제로 떠오르고 있다. 이에 본 연구에서는 객체 검출, 인식 모델을 결합하고 신호등을 인식하여 Text-To-Speech(TTS)로 알리는 쿠버네티스 기반의 프레임워크를 제안한다. 객체 검출 단계에서는 YOLOv5 모델들의 성능을 비교하여 활용하였으며 객체 인식 단계에서는 C-RNN 기반의 attention-OCR 모델을 활용하였다. 이는 신호등의 내부 LED 영역이 아닌 이미지 전체를 인식하는 방식으로 오탐지 요소를 낮춰 인식률을 높였다. 결과적으로 1,628장의 테스트 데이터에서 accuracy 0.997, F1-score 0.991의 성능 평가를 얻어 제안한 프레임워크의 타당성을 입증하였다. 본 연구는 후속 연구에서 특정 도메인에 딥러닝 모델을 한정하지 않고 다양한 분야의 모델을 접목할 수 있도록 하며 고령 운전자 및 신호 위반으로 인한 교통사고 문제를 예방할 수 있다.

Characteristics and Severity of Side Right-Angle Collisions at Signalized Intersections (신호교차로의 측면직각 층돌사고 특성과 심각도)

  • Park, Jeong-Soon;Park, Gil-Soo;Kim, Tae-Young;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.199-211
    • /
    • 2008
  • This study deals with the side right-angle collisions of 4-legged signalized intersections in Cheongju. The goals are to analyze the characteristics of accidents and to find out the accident factors that affect severity using ordered probit model. In pursuing the above, the study uses the data of 580 side right-angle collisions occurred at the 181 intersections(2004-2005). The analyses show that more accidents were occurred in the nighttime and in going straight. The main cause was analyzed to be the red-light violation. Also, the main results of modeling are the following, First, the likelihood ratio index is 0.094 and t-ratio values that explain goodness of fit are significant. Second, minor road traffic volumes, minor road lanes, major road left-turn lanes, major road left-turn signal, major road yellow signal time, cross angle, major and minor road speed limits are significant factors affecting crash severities at signalized intersections.

  • PDF