• Title/Summary/Keyword: 신재생

Search Result 4,862, Processing Time 0.029 seconds

A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning (머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구)

  • Ha, Jae-jun;Lee, Jun-hyuk;Oh, Ju-young;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.55-62
    • /
    • 2022
  • The perovskite solar cell is an active part of research in renewable energy fields such as solar energy, wind, hydroelectric power, marine energy, bioenergy, and hydrogen energy to replace fossil fuels such as oil, coal, and natural gas, which will gradually disappear as power demand increases due to the increase in use of the Internet of Things and Virtual environments due to the 4th industrial revolution. The perovskite solar cell is a solar cell device using an organic-inorganic hybrid material having a perovskite structure, and has advantages of replacing existing silicon solar cells with high efficiency, low cost solutions, and low temperature processes. In order to optimize the light absorption layer thin film predicted by the existing empirical method, reliability must be verified through device characteristics evaluation. However, since it costs a lot to evaluate the characteristics of the light-absorbing layer thin film device, the number of tests is limited. In order to solve this problem, the development and applicability of a clear and valid model using machine learning or artificial intelligence model as an auxiliary means for optimizing the light absorption layer thin film are considered infinite. In this study, to estimate the light absorption layer thin-film optimization of perovskite solar cells, the regression models of the support vector machine's linear kernel, R.B.F kernel, polynomial kernel, and sigmoid kernel were compared to verify the accuracy difference for each kernel function.

Conductive Yarn Stitch Circuit Design and Output Power Analysis for Power Transfer in Solar Wearable Energy Harvesting (태양광 웨어러블 에너지 하베스팅의 전력 전달을 위한 최적의 전도사 스티치 회로 설계 및 출력 전력 분석)

  • Jun-hyeok Jang;Ji-seon Kim;Jung-Eun Yim;Jin-Yeong Jang;Jooyong Kim
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.119-128
    • /
    • 2022
  • This study analyzes the effects of the number of angles and bends on resistance in a conductor-embroidered stitch circuit for efficient power transfer through a conductor of wearable energy harvesting to study changes in power lost through connection with actual solar panels. In this study, the angle of the conductive stitch circuit was designed in units of 30˚, from 30˚ to 180˚, and the resistance was measured using an analog Discovery 2 device. The measured resistance value was analyzed, and in the section of the angle where the resistance value rapidly changes, it was measured again and analyzed in units of 5˚. Following this, from the results of the analysis, the angle at which the tension was applied to the stitch converges was analyzed, and the resistance was measured again by varying the number of bends of the stitch at the given angle. The resistance decreases as the angle of the stitch decreases and the number of bends increases, and the conductor embroidery stitch can reduce the loss of power by 1.61 times relative to general embroidery. These results suggest that the stitching of embroidery has a significant effect on the power transfer in the transmission through the conductors of wearable energy harvesting. These results indicate the need for a follow-up study to develop a conductor circuit design technology that compares and analyzes various types of stitches, such as curved stitches, and the number of conductors, so that wearable energy harvesting can be more efficiently produced and stored.

Comparative Analysis of Growth and Development of Paddy Rice (Oryza sativa L.) by Light Intensity under Farm-type Solar Photovoltanic Power Station (추적식 영농형 태양광발전시스템 구축에 따른 음영별 하부작물 벼(Oryza sativa L.)의 생육비교)

  • Eon-Yak Kim;Ye-Jin Lee;In-Jin Kang;Hye-Min Son;Min-Ho Shin;Chang-Hyu Bae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.85-85
    • /
    • 2022
  • 영농형 태양광발전은 태양의 일사량을 전기발전과 영농에 공유하는(solar-sharing) 방식이다. 본 연구는 신재생에너지의 활용의 극대화를 위하여 추적식 영농형 태양광발전시스템을 구축하고 시설하부에서 일정 기간 재배중인 작물의 하부 환경과 생육을 조사하여 영농형태양광 하부작물개발을 위한 기초자료를 확보하고자 하였다. 구축한 추적식 영농형 태양광발전시스템은 4열 6단의 24장 모듈(8m × 6m)을 가지며, 발전시설 중심축 기둥 간 중심간격 14m로 단일지주식 스크루 공법으로 순천대학교 부속농장 답작포(순천시 죽평리)에 설치하여 하부 환경과 하부작물의 생육을 조사하였다. 태양광발전시설 하부작물의 생육을 조사하기 위하여 순천 농협육묘장에서 벼(신동진)를 육묘하여 2022년 6월 16일 이앙하였다. 태양광발전시스템 하부 지역을 4방위 방향에 따라 강음영(중심축으로부터 1~3m), 중음영(5m), 약음영(7~9m) 구역으로 설정하여 생육을 조사한 결과, 방위에 따른 초장은 남쪽에서 음영간 차이가 상대적으로 낮게 나타났으며, 1번기 태양광 발전시설에 의하여 음영이 중첩된 2번기 시설의 동쪽에서 대조구 대비 초장이 상대적으로 낮은 경향을 나타내었다. 음영강도에 따른 초장은 대체로 강음영구에서 낮게 나타났으며, 약음영구로 갈수록 높게 나타났다. 엽수는 방위에 따라서, 그리고 음영의 강도에 따른 차이가 초장에 비하여 작게 나타났다. 출수기의 경우 방위별로는 남쪽에서 음영별 차이가 작게 나타났으며, 음영강도에 따라서 차이를 보였다. 또한 태양광시설 하부에 데이터수집장치(Model 1650, Spctrum Technonogies, USA)를 설치하여 음영에 따른 토양전도도, 토양함수량, 토양온도, par light 등 생육환경을 조사, 비교하였다.

  • PDF

Very Short- and Long-Term Prediction Method for Solar Power (초 장단기 통합 태양광 발전량 예측 기법)

  • Mun Seop Yun;Se Ryung Lim;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2023
  • The global climate crisis and the implementation of low-carbon policies have led to a growing interest in renewable energy and a growing number of related industries. Among them, solar power is attracting attention as a representative eco-friendly energy that does not deplete and does not emit pollutants or greenhouse gases. As a result, the supplement of solar power facility is increasing all over the world. However, solar power is easily affected by the environment such as geography and weather, so accurate solar power forecast is important for stable operation and efficient management. However, it is very hard to predict the exact amount of solar power using statistical methods. In addition, the conventional prediction methods have focused on only short- or long-term prediction, which causes to take long time to obtain various prediction models with different prediction horizons. Therefore, this study utilizes a many-to-many structure of a recurrent neural network (RNN) to integrate short-term and long-term predictions of solar power generation. We compare various RNN-based very short- and long-term prediction methods for solar power in terms of MSE and R2 values.

Research on Optimized Operating Systems for Implementing High-Efficiency Small Wind Power Plants (고효율 소형 풍력 발전소 구현을 위한 최적화 운영 체계 연구)

  • Young-Bu Kim;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.94-99
    • /
    • 2024
  • Recently, wind power has been gaining attention as a highly efficient renewable energy source, leading to various technological developments worldwide. Typically, wind power is operated in the form of large wind farms with many wind turbines installed in areas rich in wind resources. However, in developing countries or regions isolated from the power grid, off-grid small wind power systems are emerging as an efficient solution. To efficiently operate and expand off-grid small-scale power systems, the development of real-time monitoring systems is required. For the efficient operation of small wind power systems, it is essential to develop real-time monitoring systems that can actively respond to excessive wind speeds and various environmental factors, as well as ensure the stable supply of produced power to small areas or facilities through an Energy Storage System (ESS). The implemented system monitors turbine RPM, power generation, brake operation, and more to create an optimal operating environment. The developed small wind power system can be utilized in remote road lighting, marine leisure facilities, mobile communication base stations, and other applications, contributing to the development of the RE100 industry ecosystem.

The feasibility analysis for energy utilization of forest biomass (산림 바이오매스의 에너지 활용을 위한 타당성 분석)

  • Kang, Hyeun Koo;Park, Kee Chul;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.7-20
    • /
    • 2014
  • The optimal woodchip production system was developed and the production cost of a forest woodchip fuel was calculated for utilizing the pitch pine, which covers around 480,000ha nationwide. the marginal price of the woodchip fuel considering the factor of supply price, electricity and heat selling price as well as capacity factor were suggested and the economic sensitivity analysis was conducted for various scenario. The most important variable which determine economic feasibility was a fuel cost for the power generation facility. If the electricity price is higher than the current SMP(System Marginal Price) or the capacity factor is higher than 80%, there fully is a benefit to consume the woodchip fuels produced in the suggested production system in this study. In addition, the additional benefit becomes more obvious when considering REC(Renewable Energy Certificate) and CDM(Clean Development Mechanism). Therefore, it is strongly suggested for domestic power generation sector to utilize the forest biomass fuel to achieve the obligatory target of RPS.

Commercializing Technology Development of Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell (고분자연료전지용 분리판 상용화 기술개발)

  • Kim, Jeong-Heon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.409-414
    • /
    • 2011
  • To promote the industry of PEMFC, the commercialization of its parts especially bipolar plate is needed. The bipolar plate is one of key parts for PEMFC, which occupies cost portion of 5~8% in the system. To replace the bipolar plate of machined graphite highly costly, the stamped thin matal or the molded carbon composite has been developed. According to the merits and demerits of each material and its forming process, the stamped metallic plate has been considered to the bipolar plate of PEMFC for automotive, and on the other hand, the molded composite plate has been considered to one for building applications. Hankook Tire Co., Ltd. has developed the carbon composite material and the manufacturing process for the bipolar plates. The developed bipolar plates were proved to be fully applicable to PEMFC of building applications in characteristics and performance, and so government strategic project to develop the mass-production technology for bipolar plates was started and is being conducted by the company. Through the government project for obtaining both the commercialization technology and production capacity for the bipolar plates, the price and the performance of domestic PEMFCs are expected to become competitive in international market.

Measurement of Wind and Solar Radiation for Energy Resources Survey on Islands around Namhae-Tongyoung, Korea (남해-통영 주변 도서지역에서 에너지자원 조사를 위한 풍력과 일사량의 측정)

  • Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.79-84
    • /
    • 2013
  • For the diversity of energy supply system and the improvement in the habitants' living environments of the islands, it is possible and necessary to use the natural energy as resources of the electric power generation system. In this study, the characteristics of wind and solar radiation on 4 islands offshore Namhae-Tongyoung of Korea were measured for one year from November 2010 to October 2011 and analyzed in relation to energy resources survey. As a result of measurement and analysis, the respective wind rose diagrams of 4 islands were made, and showed that the frequencies of wind directions were quite different from among the islands. The Rayleigh probability distribution of wind velocity showed that the wind speeds of KR and SS were mainly 2~5m/s, and the respective quantities of electric power generation of 4 islands were shown to be different. The variation of solar radiations and potential quantity of those uses were measured to be similar to each other among 4 islands.

A Study on Development of the GPIR system Receiver Using G-Files (G-File을 이용한 GPIR 시스템 수신기 개발)

  • Choi, Sang-Kyoon;Kim, Jae-Saeng
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.336-342
    • /
    • 2010
  • GPIR(GPS Position Information Revision) system is a new concept of GPS system which utilizes database containing the location of taking a picture by the existing GPS, an angle between a camera and a subject and the location information of buildings and minimizes the GPS's own margin of error and there by provides the services, such as location-guiding via GPS and way-guiding via navigation in an exact and precision way more than before. GPIR system comprehends the location of taking photos via GPS information saved in G-files, searches database in the direction of taking a photo at a photo-taking position via location information and the photo-taking directional angle. And GPIR system corrects the GPS information searched to the location of a subject, again saves such information in a G-file and is ready for receiving more detailed location of the subject. This study explores into the design and development of a receiver which a GPIR user is able to utilize its system as well as the design of the receiver's prototypes.

A Study on the Improvement of the Accuracy of Photovoltaic Facility Location Using the Geostatistical Analysis (공간통계기법을 이용한 태양광발전시설 입지 정확성 향상 방안)

  • Kim, Ho-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.146-156
    • /
    • 2010
  • The objective of this study was to improve the accuracy of calculation and estimation of solar radiation and duration of sunshine, which are the most important variables of photovoltaic power generation in deciding the location of photovoltaic facilities efficiently. With increasing interest in new and renewable energies, research on solar energy is also being conducted actively, but there have not been many studies on the location of photovoltaic facilities. Thus, this study calculated solar duration and solar radiation based on geographical factors, which have the most significant effect on solar energy in GIS environment, and corrected the results of analysis using diffuse radiation. Moreover, we performed ordinary kriging, a spatial statistical analysis method, for estimating values for parts deviating from the spatial resolution of input data, and used variogram, which can determine the spatial interrelation and continuity of data, in order to estimate accurate values. In the course, we compared the values of variogram factors and estimates from applicable variogram models, and selected the model with the lowest error rate. This method is considered helpful to accurate decision making on the location of photovoltaic facilities.