• Title/Summary/Keyword: 신재생발전

Search Result 227, Processing Time 0.028 seconds

An Active Battery Charge Management Scheme with Predicting Power Generation in ESS (에너지저장시스템에서 발전량 예측을 통한 능동적 배터리 충전 관리 방안)

  • Kim, Jung-Jun;Chae, Beom-Seok;Lee, Young-Kwan;Cho, Ki-Hwan
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.84-91
    • /
    • 2020
  • Along with increasing the renewable energy utilization, many researches have paid attention on the utilization and efficiency of energy storage systems. Especially, it is required an operational model in order to actively respond with each system's failure of sub-systems in the solar energy storage system. This paper proposes an energy management scheme by estimating the newly generated power based on the solar power generation samples. With comparing the estimated battery charging power in real time and the total charging power of the battery rack, a charge model is applied to adjust the charging power, As a result, the stability of energy storage system would be improved by suppressing the battery heat while maintaining battery C-Rate.

The Feasibility Analysis for PungDo Tidal Current Power Generation using SeaGen 1.2MW(600kW×2) Turbine (SeaGen 1.2MW(600kW×2)급 터빈을 이용한 풍도조류발전 타당성 분석)

  • Park, Tae-Young;Kim, Han-Sung;Kim, Yun-Wan;Park, Joo-Il;Kim, Kyung-Su
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.386-393
    • /
    • 2013
  • An feasibility analysis is performed for the tidal current power generation with the examination of the sea water speed distribution at Pungdo. In this analysis, the water speed distribution which is the key issue was obtained from the actual speed distribution data and results in "the annual current tidal power". Due to the lack of cost information, we applied EPRI data from the internet site instead of the actual information. The result could be used as a base data for the construction of current tidal power plant in the near future. And it is expected to provides good data for the Energy policy.

Design of Nonlinear Controller for Variable Speed Wind Turbines based on Kalman Filter and Artificial Neural Network (칼만필터 및 인공신경망에 기반한 가변속 풍력발전 시스템을 위한 비선형 제어기 설계)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.243-250
    • /
    • 2010
  • As the wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is how to efficiently operate the wind turbines in a wide range of wind speeds. Compared to fixed speed turbines, variable speed wind turbines feature higher energy yields, lower component stress and fewer grid connection power peaks. Generally, measurement of wind speed is required for the control of variable speed wind turbine system. However, wind speed measured by anemometers is not accurate owing to various reasons. In this work, a new control algorithm for variable speed wind turbine system based on Kalman filter which can be used for the estimation of wind speed and artificial neural network which can generate optimum rotor speed is proposed. Also, to verify the feasibility of the proposed scheme, various simulation studies are carried out by using Simulink in Matlab.

A study for electric power of float-counterweight wave energy converter (복수 연결된 부유체-균형추식 파력발전장치의 전력량에 관한 연구)

  • Lee, Sung-Bum;Hadano, Kesayoshi;Moon, Byung-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.936-942
    • /
    • 2014
  • As a result of the exhaustion of fossil fuel, interest about renewable energy is increasing day by day. Inter alia, study for wave power energy of which the calculability is high and the available amount is abundant is going along actively. As a float-countweight wave energy converter is equivalent improved structural strength compared with oscillating body type. we made the wave only in order to up and down motion by setting up bulkhead which is called wave camber at the outside of float. This paper mainly focuses on generation amount of plural connected float-counterweight wave energy converter and we calculate the amount. The result, we confirmed that the more a numerical value of nl/L increases, the more amount of electricity rises and also when it is over nl/L=0.40, it is possible to get continuous generation. Through this study, we can use as basic data for design of wave chamber on advantageous condition at the real seas and by way of estimation for generation amount.

Ocean Current Power Farm Interaction Study (해양 조류발전단지 간섭 연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Chae, Kwang-Su;Park, Ro-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.109-113
    • /
    • 2009
  • Several tidal current power plants are being planned and constructed in Korea utilizing the strong tidal currents along the west and south coasts. A tidal current reaches 9.7 m on the west coast; there are few potential regions for tidal current power generation. The construction of a dam to store water can prevent the circulation of water, causing a great environmental impact on the coast and estuary. The tidal barrage could produce a large amount of power, but it should be carefully considered. The purpose of developing renewable energies is to minimize the environmental impact and to maximize the utilization of clean energy. To produce a great quantity of power, tidal current farms require the placement of numerous units in the ocean. The power generation is very dependent on the size of the rotor and the incoming flow velocity. Also, the interactions between devices contribute greatly to the production of power. The efficiency of a power farm is estimated to determine the production rate. This paper introduces 3 D interaction problems between rotating rotors, considering the axial, transverse, and diagonal distances between horizontal axis tidal current devices.

Prototype Kite Development for Wind Power Generation (고공풍력 발전용 시제품 Kite 비행체 개발)

  • Kwon, Jae-Wook;Kim, Jong-Chul;Moon, Sang-Man;Choi, Ji-Ung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.259-260
    • /
    • 2012
  • With increasing interest in alternative energy source for green growth, this document shows that the study of kite flight control is based on the concept of autonomous flight of kite can exploit the energy. Currently, prototype kite was designed and the purpose of its flight test, by manual flight control with Remote Controller, was performed for the feasibility of the full automatic flight control. For the future research, the test data should be collected through the many flight test under various environment.

  • PDF

Development of artificial neural network based modeling scheme for wind turbine fault detection system (풍력발전 고장검출 시스템을 위한 인공 신경망 기반의 모델링 기법 개발)

  • Moon, Dae Sun;Ra, In Ho;Kim, Sung Ho
    • Smart Media Journal
    • /
    • v.1 no.2
    • /
    • pp.47-53
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance procedures. Condition Monitoring System(CMS) can be used to aid plant owners in achieving these goals. In this work, systematic design procedure for artificial neural network based normal behavior model which can be applied for fault detection of various devices is proposed. Furthermore, to verify the design method SCADA(Supervisor Control and Data Acquisition) data from 850kW wind turbine system installed in Beaung port were utilized.

  • PDF

Study on Artificial Neural Network Based Fault Detection Schemes for Wind Turbine System (풍력발전 시스템을 위한 인공 신경망 기반의 고장검출기법에 대한 연구)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.603-609
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance procedures. Condition Monitoring System(CMS) can be used to aid plant owners in achieving these goals. Its aim is to provide operators with information regarding the health of their machines, which in turn, can help them improve operational efficiency. In this work, systematic design procedure for artificial neural network based normal behavior model which can be applied for fault detection of various devices is proposed. Furthermore, to verify the design method SCADA(Supervisor Control and Data Acquisition) data from 850KW wind turbine system installed in Beaung port were utilized.

An Economic Feasibility Study of Wind-Diesel Hybrid Power Systems for an Island in the Yellow Sea (서해 도서지역의 풍력-디젤 하이브리드 발전에 대한 경제성 분석)

  • Lee, Tak-Kee;Nam, Yong-Yun;Kim, Jae-Dong;Han, Jeong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.5
    • /
    • pp.381-385
    • /
    • 2011
  • In this paper, an economic feasibility study of wind-diesel hybrid power systems for an island in the Yellow Sea, where the maximum power generation is about 500kW, was performed. For the study, annual electric load variation and wind resource data of the island were collected and analyzed. HOMER program - a typical hybrid optimization model for electric renewables including wind resource, developed by the National Renewable Energy Laboratory - was used. Wind speed and diesel price were picked out as variables for the sensitivity analysis in order to find the economic accountability for the wind-diesel hybrid power system. As the result, even though it is not feasible economically under the present condition, if mean wind speed is over 3 m/sec. or diesel price goes up to 2.4 $ per liter, the wind-diesel hybrid power system for the island becomes a prospective candidate.

Development of IR Camera based Fault Detection System for Wind Turbine Generator (IR 카메라 기반의 풍력발전용 고장검출 시스템 개발)

  • Kim, Se-Yoon;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.780-785
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around the world. Generally, wind turbine systems are designed to be operated for twenty years long, Therefore, various faults in the wind turbine system inevitably occur during their long term period of operation. Especially, rotor shaft, gear-box and generator are installed inside of nacelle, furthermore, some cooling systems for normal operation of these devices are also required. If these cooing systems have failed in their operation, it is impossible for the entire system to be operated normally. In this work, IR(Infra Red) camera based fault detection system for the preventive detection of various cooling systems faults is proposed. To verify the applicability of the proposed system, physical implementation is embodied and various experiments are carried out.