그리드 컴퓨팅은 단일 컴퓨터로는 해결할 수 없는 대용량의 작업을 처리하기 위해 제안되었다. 그리드 컴퓨팅은 지리적으로 분산된 이기종 자원들을 상호 연결하여 대용량의 작업들을 처리하는 새로운 차세대 컴퓨팅이다. 그런데, 분산된 이기종의 자원들을 모을 때에 많은 어려운 문제들이 발생한다. 특히, 자원들의 신뢰성을 보장하는 것은 가장 심각한 문제 중에 하나이다. 그래서 우리는 그리드 자원의 신뢰성을 측정하여 자원을 할당하는 그리드 자원 신뢰성 측정 스케줄링 모델을 제안한다. 우리는 자원의 상태 정보를 기반으로 하여 자원 신뢰성을 측정하고, DEVSJAVA 모델링과 시뮬레이션 환경에서 그리드 시뮬레이션 모델에 그리드 자원 신뢰성 측정 방법을 적용하였다. 그리고, 이 논문은 스케줄링 모델들의 Utilization, Job loss, Throughput 그리고 Average Turn-around Time 같은 파라미터들을 측정하였고, 자원 신뢰성 측정을 이용한 그리드 자원 신뢰성 측정 스케줄링 모델의 실험 결과들을 기존의 스케줄링 모델들(랜덤 스케줄링 모델, 라운드 로빈 스케줄링 모델)과 비교하였다. 이 실험 결과들은 자원 신뢰성 측정 스케줄링 모델이 랜덤 스케줄링 모델과 라운드 로빈 스케줄링 모델에 비해 효율적인 자원 할당과 안정적인 작업 처리를 제공한다는 것을 보여준다.
최근 소프트웨어는 고성능의 많은 기능을 제공해야 하기 때문에 그 중요성이 증가할 뿐만 아니라 복잡도 또한 증가하고 있다. 그러므로 신뢰할 만한 소프트웨어를 개발하는 것이 중요한 이슈가 되고 있다. 신뢰할 만한 소프트웨어를 개발하기 위해서는 신뢰성을 초기단계에서부터 관리해야 할 필요성이 있지만 대부분 신뢰성 추정 모델의 경우 시스템 또는 운영 테스트 단계에서 주로 사용되고 있다. 신뢰성 높은 소프트웨어를 개발하기 위해서는 초기 테스트 단계에서부터 개별 유닛의 신뢰성을 관리할 필요성이 있기에 이 단계에서의 특징을 반영해야 한다. 그러나 초기 테스트 단계에서는 개발자와 테스터가 분리되는 것이 아니라 개발자가 테스트뿐만 아니라 디버그까지 함께 수행을 하게 된다. 그렇기 때문에 테스트 시간과 디버그 시간을 모두 고려하는 신뢰성 추정 모델이 필요하다. 본 논문에서는 초기 테스트 단계에서부터 개별 유닛의 신뢰성 관리를 지원하고자 새로운 신뢰성 모델을 제안하였다. 그리고 실제 산업에서 수집된 데이터를 이용하여 제안한 모델이 실제 데이터와 얼마나 일치하는지 그리고 기존 모델과 어떤 차이를 보이는지를 확인하기 위한 실험을 수행하였다.
소프트웨어를 테스팅하는 동안 얻어지는 고장 데이터를 분석하여 소프트웨어의 신뢰성이 성장하는 과정을 평가하기 위해 여러 가지 소프트웨어 신뢰성 성장 모델들이 개발되었다. 그러나 이들 신뢰성 성장 모델들은 소프트웨어 개발과 사용환경에 관한 여러 가지 가정에 기반하고 있기 때문에, 이 가정이 적합하지 않은 상황이나 결함이 드물게 발생되는 소프트웨어에 대해서는 적절하지 않다. 입력영역에 기초한 소프트웨어 신뢰성 모델은 일반적으로 이러한 가정을 요구하지 않는데 디버깅 전의 소프트웨어와 디버깅 후의 소프트웨어를 별개의 것으로 다루어 많은 테스트 입력을 요하는 단점이 있다. 본 논문에서는 이러한 가정이 요구되지 않고 디버깅 전과 후의 소프트웨어를 동시에 테스트하는 방법에 기반을 둔 입력 영역 기반 소프트웨어 성장모델을 제안하고 그 통계적 특성을 조사한다. 이 모델은 모든 데이터를 다 활용하기 때문에 기존 입력영역 소프트웨어 신뢰성 모델에 비해 적은 테스트 입력을 필요로 할 것으로 기대된다. 그리고 소프트웨어의 유지보수 단계에 적용하기 위해 개발된 유사한 방법들과 비교한다.
신뢰성 분석은 불확실성으로 인한 제품의 성능 변동을 안전확률이나 파괴확률로 정량화 하여 설계에 이용하기 위해 연구되어 왔다. 불확실성은, 데이터의 양에 따라-물질의 본질적인 특성으로서의 많은 데이터가 주어진 경우의 물리적 불확실성과 부족한 데이터에서의 인식론적 불확실성으로 구분되고, 불확실성을 갖는 대상에 따라-입력변수 및 근사모델 불확실성으로 구분된다. 물리적 불확실성에 대한 연구는 많이 진행되어 왔지만, 실제 산업현장에는 부족한 데이터로 인한 인식론적 불확실성이 지배적이며 이에 대한 연구는 최근에서야 진행되고 있다. 불확실성을 고려하는 신뢰성 기반 설계에는 효율성을 위해 실제모델을 대체하는 근사모델이 이용되는데, 근사모델법 자체에 대한 연구는 많이 진행되어 왔으나, 근사모델 이기 때문에 존재하는 불확실성을 고려한 연구는 최근에서야 연구되기 시작하였다. 본 연구에서는 베이지안 접근법에 기반하여 입력변수 및 근사모델 불확실성을 통합 고려하는 새로운 신뢰성 분석 기법을 제시하고 수치예제를 통해 타당성을 증명한 후, 이를 공학문제에 적용한다.
Gompertz 성장곡선에 기반한 기존의 소프트웨어 신뢰성 성장모델들은 모두 대수형이다. 대수형 Gompertz 성장 곡선에 기반한 소프트웨어 신뢰성 성장 모델들은 모수 추정에 어려움을 갖고 있다. 그러므로 본 논문은 로지스틱형 Gompertz 성장곡선에 기반한 신뢰성 성장 모델을 제안한다. 13개의 다른 소프트웨어 프로젝트로부터 얻은 고장 데이터를 분석하여 그 유용성을 검토하였다. 모델의 모수들은 변수변환을 통한 선형희귀분석과 Virence의 방법으로 추정되었다. 제안된 모델은 평균 상대 예측 오차에 기반하여 성능을 비교하였다. 실험 결과 제안된 모델은 대수형 Gompertz 성장 곡선에 기반한 모델보다 좋은 성능을 보였다.
이동에이전트 시스템의 상용화 시작과 더불어 이동에이전트 시스템에 대한 신뢰성 향상의 노력이 시작되었다. 이러한 노력에 부응하여 이동에이전트 시스템 XMAS에서는 신뢰성 향상을 위한 방법으로 트랜잭션 개념을 도입하고 있다. 트랜잭션 개념의 도입으로 이동에이전트 수행결과의 일관성 유지가 가능하여 데이터에 대한 신뢰성 향상을 기대할 수 있다. 이동에이전트는 기존 트랜잭션 모델과는 다른 다양한 특성을 갖는다. 따라서 이동에이전트가 하나의 트랜잭션으로 처리되기 위해서는 기존 트랜잭션 모델과는 다른 트랜잭션 처리방법이 고려되어야 한다. 본 논문에서는 기존 트랜잭션 모델에서 발견되지 않는 이동에이전트의 특성을 알아보고 이러한 특성들이 트랜잭션 모델과 트랜잭션 처리방법에 미치는 영향을 살펴본다.
Park, Seo and Kim은 소프트웨어의 시험단계와 유지보수단계에 모두 적용할 수 있는 입력 영역 기반 소프트웨어 신뢰성 성장 모델을 개발하였다. 이들의 모형은 완전디버깅의 가정 하에서 개발되어졌다. 입력 영역 기반 소프트웨어 신뢰성 성장 모델이 현실적이기 위해서는 이러한 가정은 개선되어야 한다. 본 논문에서는 불완전 디버깅 하에서 사용할 수 있는 입력 영역 기반 소프트웨어 신뢰성 성장 모델을 제안하고 그 통계적 특성을 조사한다.
본 논문은 모델 기반 내장형 소프트웨어의 자동 생성 코드에 대한 효율적인 신뢰성 시험 절차와 구체화된 동적 시험 방안에 대해서 제시하고 있다. 모델 정적/동적 시험 각각을 코드 정적/동적 시험 전에 수행함으로서 코드 신뢰성 시험 수행의 이점이 있음을 기술하였다. 또한, 모델과 코드의 신뢰성 시험 상관관계를 모델의 경우 Model Advisor와 Verification and Validation tool, 코드의 경우 Polyspace와 LDRA를 이용하여 살펴보고 제시한 절차대로 수행한 신뢰성 시험의 결과를 보여주고 있다.
본 논문에서는 설명가능한 머신러닝 모델과 관련된 다양한 도구를 활용해보고, 최근 각광받는 주제인 신뢰성에 대해서도 고찰해보았다. 근래의 인공지능 모델은 설명력을 덧붙여 정보 장벽을 낮추는 방향으로 진화하고 있다. 이에 따라 AI 모형이 제공하는 정보량이 늘고 사용자 진화적 인 방식으로 바뀌면서 사용자층이 확대되고 있는 추세이다. 또한 데이터 분석 분야의 영향력이 높아지고 연구 주체들이 다양해지면서, 해당 모델이나 데이터에 관한 신뢰성을 확보해야한다는 요구가 많아지고 있다. 이에 많은 연구자들이 인공지능 모델의 신뢰성의 확보를 위해 노력하고 있다. 본 연구에서는 이러한 노력의 발자취를 따라가보면서 인공지능의 설명가능성에 관하여 소개하려고 한다. 그 과정에서 민감한 데이터를 다루어보면서 신뢰성 활보의 필요성에 대해서도 논의해보려고 한다.
신뢰성 성장 시험을 수행하며 획득하게 되는 고장 정보와 누적 시험수행시간을 이용하면 신뢰성 성장 모델의 모수 추정이 가능하며, 모수 추정을 통해 해당 제품의 MTBF를 예측할 수 있다. 그러나 시험에 대한 비용, 시간 혹은 제품의 특성 등의 여러 제약으로 인해 고장 정보가 구간적으로 획득되거나, 획득한 고장 정보의 샘플 데이터(Sample Data)의 수가 작을 수 있다. 이는 신뢰성 성장 모델의 모수 추정의 오차를 커지게 하는 원인이 될 수 있다. 본 논문에서는 샘플 데이터의 수가 작을 경우 신뢰성 성장 모델의 모수 추정 시 베이지안 기법 기반의 모수 추정 방법의 적용에 대해 연구를 수행하였다. 시뮬레이션 결과 신뢰성 성장 모델의 모수를 추정할 때, MLE를 적용하여 추정하는 방법보다 베이지안 기법을 적용하는 방법이 추정 정확도가 높음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.