• Title/Summary/Keyword: 신뢰도-중복 최적화 문제

Search Result 7, Processing Time 0.018 seconds

A Study on Reliability Optimal Design of Satellite system(Based on MSC System's structure of KOMPSAT-2) (인공위성 시스템의 신뢰도 최적 설계에 관한 연구(아리랑위성 2호의 MSC 시스템 구조를 중심으로))

  • Kim, Heung-Seob;Jeon, Geon-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1150-1159
    • /
    • 2011
  • Reliability is defined as a probability that a system will operate properly for a specified period of time under the design operating conditions without failure. Reliability-Redundancy Optimization Problem(RROP) involves selection of components with multiple choices, redundancy levels and redundancy strategy(Active or Standby) for maximizing system reliability with constraints such as cost, weight, etc. Based on the design configuration of Multi-Spectral Camera(MSC) system of KOMPSAT-2, the mathematical programming model for RROP is suggested in this study. Due to the nature of RROP, i.e. NP-hard problem, Parallel Particle Swarm Optimization(PPSO) algorithm is proposed to solve it. The result of the numerical experiment for RROP is presented as instance of recommended design configuration at some mission time.

Efficient Privacy-Preserving Duplicate Elimination in Edge Computing Environment Based on Trusted Execution Environment (신뢰실행환경기반 엣지컴퓨팅 환경에서의 암호문에 대한 효율적 프라이버시 보존 데이터 중복제거)

  • Koo, Dongyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.305-316
    • /
    • 2022
  • With the flood of digital data owing to the Internet of Things and big data, cloud service providers that process and store vast amount of data from multiple users can apply duplicate data elimination technique for efficient data management. The user experience can be improved as the notion of edge computing paradigm is introduced as an extension of the cloud computing to improve problems such as network congestion to a central cloud server and reduced computational efficiency. However, the addition of a new edge device that is not entirely reliable in the edge computing may cause increase in the computational complexity for additional cryptographic operations to preserve data privacy in duplicate identification and elimination process. In this paper, we propose an efficiency-improved duplicate data elimination protocol while preserving data privacy with an optimized user-edge-cloud communication framework by utilizing a trusted execution environment. Direct sharing of secret information between the user and the central cloud server can minimize the computational complexity in edge devices and enables the use of efficient encryption algorithms at the side of cloud service providers. Users also improve the user experience by offloading data to edge devices, enabling duplicate elimination and independent activity. Through experiments, efficiency of the proposed scheme has been analyzed such as up to 78x improvements in computation during data outsourcing process compared to the previous study which does not exploit trusted execution environment in edge computing architecture.

A k-out-of-n System Reliability Optimization Problem with Mixed Redundancy (혼합 중복 k-out-of-n 시스템 신뢰도 최적화 문제)

  • Baek, Seungwon;Jeon, Geonwook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.2
    • /
    • pp.90-98
    • /
    • 2013
  • The k-out-of-n system with mixed redundancy is defined as k-out-of-n system which both includes warm-standby and cold-standby components. In case that operating components in the system fail and the system needs quick transition of standby components to operation state, the k-out-of-n system with mixed redundancy is useful for decreasing system failure rate and operational cost. Reliability-Redundancy Optimization Problem (RROP) involves selection of components with multiple choices and redundancy levels for maximizing system reliability with constraints such as cost, weight, etc. A solution methodology by using harmony search algorithm for RROP of the k-out-of-n system with mixed redundancy to maximize system reliability was suggested in this study.

A Reliability Optimization Problem of System with Mixed Redundancy Strategies (혼합 중복전략을 고려한 시스템 신뢰도 최적화 문제)

  • Kim, Heung-Seob;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.153-162
    • /
    • 2012
  • The reliability is defined as a probability that a system will operate properly for a specified period of time under the design operating conditions without failure and it has been considered as one of the major design parameters in the field of industries. Reliability-Redundancy Optimization Problem(RROP) involves selec tion of components with multiple choices and redundancy levels for maximizing system reliability with constraints such as cost, weight, etc. However, in practice both active and cold standby redundancies may be used within a particular system design. Therefore, a redundancy strategy(active, cold standby) for each subsystem in order to maximize system reliability is considered in this study. Due to the nature of RROP, i.e. NP-hard problem, A Parallel Particle Swarm Optimization(PPSO) algorithm is proposed to solve the mathematical programming model and it gives consistently better quality solutions than existing studies for benchmark problems.

협업 비즈니스 프로세스의 서비스 품질(QoS)에 관한 연구

  • O, Je-Yeon;Jo, Nam-Uk;Kim, Hun-Tae;Min, Yun-Hong;Gang, Seok-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.251-255
    • /
    • 2007
  • 오늘날 세계화된 시장 환경은 기업간 협업 프로세스의 동적 구성을 요구하고 있으며, 웹 서비스 (Web services)와 비즈니스 프로세스 관리 (Business Process Management) 기술의 발전이 이의 구현을 뒷받침하고 있다. 임의의 기업과의 느슨한 구성(loosely-coupled)을 통한 동적 협업이 활성화됨에 따라, 프로세스의 서비스 품질 (Quality of Service)이 중요한 문제로 대두되고 있는데, 특히 단순한 단위 웹 서비스가 아닌 장기 실행 액티비티 (Long-termed activity)를 포함하는 협업 프로세스에서는 제한된 시간 내에 프로세스의 정상적 수행을 보장하는 것이 핵심적 요구사항이라 할 수 있다. 본 연구에서는 프로세스 수행 계획을 동적으로 생성, 관리함으로써 프로세스의 각 인스턴스들의 완료와 납기 준수를 보장할 수 있는 방법론을 제시한다. 본 방법론은 프로세스 인스턴스의 진행과정에 따라 중복(redundancy) 계획을 동적으로 수정함으로써 각 액티비티의 수행 시간과 신뢰성(reliability)을 독립적으로 관리한다. 본 방법론의 최적화 모델은 NP-hard로 증명되었으며, 본 연구에서는 최적화 모델을 위한 휴리스틱 알고리즘을 제시하고, 이를 실제 최적해와 비교하는 실험을 행하였다. 본 연구를 통해 보다 복잡한 기업간 협업환경에서의 수행 보장과 장애내감성 실현이 가능해 질 것으로 기대된다.

  • PDF

A Reliability Redundancy Optimization Problem with Continuous Time Absorbing Markov Chain (연속시간 흡수 마코프체인을 활용한 신뢰도 중복 최적화 문제)

  • Kim, Gak-Gyu;Baek, Seungwon;Yoon, Bong-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.4
    • /
    • pp.290-297
    • /
    • 2013
  • The increasing level of operation in high-tech industry is likely to require ever more complex structure in reliability problem. Furthermore, system failures are more significant on society as a whole than ever before. Reliability redundancy optimization problem (RROP) plays a important role in the designing and analyzing the complex system. RROP involves selection of components with multiple choices and redundancy levels for maximizing system reliability with constraints such as cost, weight, etc. Meanwhile, previous works on RROP dealt with system with perfect failure detection, which gave at most a good solution. However, we studied RROP with imperfect failure detection and switching. Using absorbing Markov Chain, we present not a good solution but the optimal one. In this study, the optimal system configuration is designed with warm and cold-standby redundancy for k-out-of-n system in terms of MTTF that is one of the performance measures of reliability.

Reinforcement Learning for Node-disjoint Path Problem in Wireless Ad-hoc Networks (무선 애드혹 네트워크에서 노드분리 경로문제를 위한 강화학습)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.1011-1017
    • /
    • 2019
  • This paper proposes reinforcement learning to solve the node-disjoint path problem which establishes multipath for reliable data transmission in wireless ad-hoc networks. The node-disjoint path problem is a problem of determining a plurality of paths so that the intermediate nodes do not overlap between the source and the destination. In this paper, we propose an optimization method considering transmission distance in a large-scale wireless ad-hoc network using Q-learning in reinforcement learning, one of machine learning. Especially, in order to solve the node-disjoint path problem in a large-scale wireless ad-hoc network, a large amount of computation is required, but the proposed reinforcement learning efficiently obtains appropriate results by learning the path. The performance of the proposed reinforcement learning is evaluated from the viewpoint of transmission distance to establish two node-disjoint paths. From the evaluation results, it showed better performance in the transmission distance compared with the conventional simulated annealing.