• Title, Summary, Keyword: 신기지체구조운동

Search Result 8, Processing Time 0.042 seconds

Geologic Structure of the Anatolian Peninsula: Tectonic Growth of Collisional Continental Margins (아나톨리아 반도의 지질구조: 대륙 충돌에 따른 구조적 성장)

  • Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.465-476
    • /
    • 2012
  • The Anatolia peninsula consists of several continental fragments that include the Pontide Block in north and the Anatolide-Touride Block in south as well as the Arabian Platform in southeast. These continental blocks were joined together into a single landmass in the late Tertiary. During most of the Phanerozoic these continental blocks were separated by paleo-oceans, such as Paleo-Tethys and Neo-Tethys. The Pontide Block in north show Laurasian affinities, and was only slightly affected by the Alpide orogeny; they preserve evidence for the Variscan and Cimmeride orogenies. The Pontic Block is composed of the Strandja, Istanbul and Sakarya zones that were amalgamated into a single terrane by the mid Cretaceous times. The Anatolide-Tauride Block in south shows Gondwana affinities but was separated from Gondwana in the Triassic and formed an extensive carbonate platform during the Mesozoic. The Anatolide-Tauride Block was intensely deformed and partly metamorphosed during the Alpide orogeny; this leads to the subdivision of the Anatolide-Tauride Block into several zones on the basis of the type and age of metamorphism and deformation. The Arabian Platform in southeast forms the northernmost extension of the Arabian Plate that shows a stratigraphy similar to the Anatolide-Tauride Block with a clastic-carbonate dominated Palaeozoic and a carbonate dominated Mesozoic succession. A new tectonic era started in Anatolia Peninsula in the Oligocene-Miocene after the final amalgamation of these continental blocks and plate. This neotectonic phase is characterized by extension, and strike-slip faulting, continental sedimentation, and widespread calcalkaline magmatism, which played a very important role in producing beautiful landscapes of the Anatolia Peninsula today.

The Formative Processes and Ages of Paleo-coastal Sediments in Daepo-dong Sacheon-si in the Southern Coast, South Korea: Evaluation of the Mode and Rate of the Late Quaternary Tectonism (II) (남해안 사천시 대포동 일대에 분포하는 고해안 퇴적물의 형성 과정과 형성 시기: 한반도 제4기 후기 지각운동의 양식과 변형률 산출을 위한 연구(II))

  • Shin, Jaeryul;Hong, Seongchan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.57-70
    • /
    • 2018
  • This study restores onshore paleo-shoreline records and establishes the nature and strain rate of neotectonism by investigating the existence and formative age of paleo-coastal sediments emerged around Sacheon-si in the Southern part of the Korean peninsula. As a result, paleo-sand bars representing 5m of the paleo-shoreline from high tide level are formed in Sacheon-si, and the formation age of these is confirmed as MIS 5c at approximately 100,000 year BP through rock surface luminescence dating to rounded gravels in paleo-sand bars. Although it is difficult to establish the uplift rate of crust precisely due to incomplete restoration of sea level records during the last interglacial stage, the uplift rate along the Southern coast of the peninsula was assumed approximately 0.72 lower than the Eastern coast during the late Quaternary in comparison to the 1st marine terrace along the Eastern coast.

A Critical Review on Setting up the Concept, Timing and Mechanism of Tertiary Tilted Flexural Mode of the Korean Peninsula: A new hypothesis derived from plate tectonics ('신생대 제3기 경동성 요곡운동'의 개념, 시기, 기작에 관한 비판적 고찰: 판구조운동 기원의 새로운 가설)

  • Shin, Jaeryul;Hwang, Sangill
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.2
    • /
    • pp.200-220
    • /
    • 2014
  • This study reexamines the old concept and reviews prevalent statements on Cenozoic vertical motions of the peninsula that have been uncritically repeated in our academia. The contents of this paper are redefinition of the notion, tilted flexure or warping, and a suggestion for a new time set and properties of the deformation, followed by a new model on its influencing factors and processes. In conclusion, the Cenozoic vertical motion of the Korean peninsula can be reified further with an epeirogenic movement of uplift in the east side-subsidence in the west side of the peninsula since the Neogene (23 Ma). However, the regional boundary for areas of uplift and subsidence is not likely in the Korean peninsula but broader farther to East China and the southern part of Russia. It can be best understood that mantle convection produced by subducting activities in the Western Pacific Subduction Zone causes the uplift and subsidence of earth surface around NE Asia. In addition, faultings in the upper lithosphere induced by in-situ plate boundary stresses accelerate regional uplift in the peninsula since the Quaternary. Controversies that are still standing such as current uplift movements along the western coast of the peninsula during the late Quaternary could be precisely discussed with future research providing detailed information on it.

  • PDF

Late Neogene and Quaternary Vertical Motions in the Otway Coast, Southeast Australia (I): Development and Geochronology of Quaternary Marine Terraces (호주 남동부 Otway 해안의 후기 신제3기 및 제4기 융기 운동(I): 제4기 해안단구 발달 및 지층서)

  • Shin, Jaeryul
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.519-533
    • /
    • 2012
  • This study investigates a neotectonic context of the past 5 Ma for the Otway Ranges along the southern Victoria coast, SE Australia by evaluating the distribution and development of marine terraces along the mountainous coastal area. Uplift rate derived from low terrace deposits using OSL dating method is determined to evaluate the extent to which mild intraplate tectonism has the capability to influence the geomorphic evolution of continental interiors. This study also investigates the stratigraphic relationship between Quaternary marine terraces and Pliocene strandlines, which suggests a change of tectonic activity in the Late Neogene. The intensified tectonic response is well addressed in terms of an increase of the Australian intraplate stress level due to the change of relative motion and increased forces in the boundary between the Australian and Pacific plate.

Late Neogene and Quaternary Vertical Motions in the Otway Coast, Southeast Australia (II): Epeirogenic Uplift Driven by Lithospheric Flexural Deformation (호주 남동부 Otway 해안의 후기 신제3기 및 제4기 융기 운동(II): 암석권 휨 현상에 의한 대륙 지각의 융기)

  • Shin, Jaeryul
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.534-543
    • /
    • 2012
  • The relationship between tectonic uplift and geophysical analysis of gravity anomalies and the in-situ stress fields in the Otway Ranges, SE Australia is addressed in this study to understand the nature and possible mechanism for the neotectonic movements. The uplift axis of the ranges is coincident with the regional Bouguer gravity highs whereas thick Tertiary sedimentary successions are highly correlated with the gravity lows along the basin rift geometry. This result suggests that the gravity highs are separated by the thick Tertiary sedimentary successions. Regional structural trends associated with faults and foldings of the deformed surfaces are consistent with the prevailing NW-SE $S_{Hmax}$ trend in this part of the continent. The anomalously positive correlation between topography and Bouguer gravity fields suggests possibly a lithospheric flexural deformation mode at a long wavelength (order of $10^2$ kms) in the region. It also suggests that the reactivation of pre-existing lithospheric structures driven by plate boundary forces plays a key role in this mode.

Paleostress reconstruction using fault-slip data from drill core: Application to the interpretation of the Quaternary faulting events in SE Korea (시추코어에서 소단층을 이용한 고응력장 복원: 한반도 남동부 제4기 단층운동 해석에의 적용)

  • Gwon, Sehyeon;Kim, Young-Seog
    • Journal of the Geological Society of Korea
    • /
    • v.53 no.1
    • /
    • pp.193-206
    • /
    • 2017
  • Paleostress reconstruction for striated faults was conducted to infer stress field evolution in a borehole of JG-4 within the Janggi basin, SE Korea. The fault-slip data from the un-oriented cores were collected with an assumption on the bedding in borehole imagery, which can be used as a reference fabric to reorient the faults into their original positions. The oriented fault data from the core were processed based on multiple inversion method, where two stress states were identified: N-S compression and NW-SE compression. The geometric and kinematic analysis of deformation bands, fault drags from the cores, and the misfit angles on the striated faults suggest that NW-SE compression is younger than N-S compression. Although the inferred stress states are slightly different from the known Quaternary compressive stress direction, they may indicate other faulting events during the Quaternary in SE Korea, based on the age of the recorded rocks and previous studies. This work could help for the establishment of neotectonic framework and the leakage characteristics of $CO_2$ storage in this area.

Quaternary Tectonic Activities and Seismic Stability of Suryum Fault and Yupchon Fault, SE Korea (수렴단층과 읍천단층의 제4기 활동 및 지진 안정성)

  • Hwang, Sangill;Shin, Jaeryul;Yoon, Soon-Ock
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.4
    • /
    • pp.351-363
    • /
    • 2012
  • Although the Korean peninsula has been considered as a largely aseismic region compared with the surrounding high seismic areas such as North China and Japan, there are more than thirty Quaternary faults reported so far, which are mostly centered in the southeastern peninsula. Structural studies of active faults exposed in Yangnam-myeon of Gyeongju, SE Korea are largely interpreted to post date the late Quaternary, suggesting that the NE-trending reverse faults may result from the active stress regime in the peninsula. The prevailing present-day E-W $S_{Hmax}$ orientations in the peninsula are consistent with the nature of plate forcing stemming from the convergence between the Indo-Australian and Eurasian plates. It is clear that the Quaternary faults have been reactivated, although resolving more elaborate time intervals responsible for a future rupture remains a significant challenge. This study contributes to better assess many of potential seismic hazards in the study area, in particular, in terms of seismic stability for foundation of nuclear power plant.

  • PDF