This paper presents speed control of IPMSM drive using neural network(NN) PI controller. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, NNPI controller proposes a new method based neural network. NNPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fired gains one in terms of robustness, even under great variations of operating conditions and load disturbance.
Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current md voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using adaptive teaming fuzzy neural network and artificial neural network. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper proposes speed control of IPMSM using adaptive teaming fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive teaming fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive teaming fuzzy neural network and artificial neural network.
This paper presents self tuning PI controller of IPMSM drive using neural network. Self tuning PI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.
도로의 중앙에 일정한 간격으로 마그네틱 마커를 설치하고 차량에 자기 센서를 장착하여 차량의 이동에 따른 자기장의 변화를 측정하여 차량의 주행 경로를 인식하는 시스템의 성능을 개선하는 방법을 제안한다. 도로에 설치하는 마그네틱 마커들의 설치비를 절감하기 위하여 마커들 간의 설치간격을 기존의 경우보다 넓혔다. 이를 위하여 마커들의 간격에 따른 자계의 분석을 행하여 적절한 마커들의 간격을 알아내고, 6개 센서들의 배치방법과 신경회로망을 이용한 제어방법을 제안하였다. 자기장 분석, 지자기 소거. 학습패턴 획득, 신경망 학습에 의해 조향 제어기를 구성하고 컴퓨터 주행 시뮬레이션을 통해 제안된 방법에 의한 자율주행 차량의 성능이 개선될 수 있음을 확인하였다.
It is inevitable for local systems to have deviations which represent interactions and modeling errors originated from the decomposition process of a large scale system. This paper presents a decentralized control scheme for interconnected systems using local linear models and a neuro-coordinator. In the proposed method, the local system is composed of a linear model and unknown deviations caused by linearizing the subsystems around operating points or by estimating parameters of the subsystems. Because the local system has unmeasurable deviations we define a local reference model which consists of a local linear model and a neural network to estimate the deviations indirectly. The reference model is reformed into a linear model which has no deviations through a transformation of input variables and we obtain an optimum feedback control law which minimizes a local performance index. Finally, we derive a decentralized feedback control law which consists of local linear states and neural network outputs. In the decentralized control, the neuro-coordinator generates a corrective control signal to cancel the effect of deviations through backpropagation learning with the errors obtained from the differences of the local system outputs and reference model outputs. Also, the stability of local system is proved by the degree of learning of the neural network under an assumption on a neural network learning index. It is shown by computer simulations that the proposed control scheme can be applied successfully to the control of a biased two-link planar robot manipulator.
Pneumatic control system has been applied to build many industrial automation systems. But most of them are sequence control type because of their low costs, safety, reliability, etc. Pneumatic servo system is rarely applied to real industrial fields because accurate position control is very difficult due to its nonlinearity and compressibility of air. In pneumatic servo control system, a pneumatic servo valve can be applied, But it is very expensive and has no advantage of low cost compared with a common pneumatic system. This paper is concerned with the accurate position control of a rodless pneumatic cylinder using on/off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem, switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated through experiments nth various loads.
감자칩의 생산 공정에서 속슬렛 추출법에 의한 지방 함량의 측정은 측정 시간이 길어서 공정 제어에 이용하기에 적절하지 못하기 때문에, 근적외선 분광 분석법에 의한 감자칩의 지방 함량의 신속한 측정에 대한 연구를 수행하였다. 분쇄된 시료와 분쇄되지 않은 시료에 대한 스펙트럼과 지방 함량과의 상관 관계를 각각 분석하였고, 분석된 상관 관계를 토대로 하여 예측 모형을 개발하였으며, 개발된 예측 모형에 대해 검증하였다. 예측 모형의 개발에는 회귀 분석과 신경회로망 기법을 이용하였다. 분쇄된 시료에 대한 지방 함량의 예측 모형은 회귀모형과 신경 회로망 기법에 의해서, 결정 계수가 각각 093, 0.92, SEP는 각각 1.29%, 1.17%였다. 이와 같은 결과에 의해서, 근적외 분광 분석법에 의한 분쇄된 감자칩의 지방 함량의 예측 모형 개발이 가능하다고 판단되었다. 또한 SEP를 비교할 때, 회귀 모형보다는 신경 회로망 기법에 의한 예측 모형이 더 우수한 것으로 나타났다. 분쇄되지 않은 시료에 대한 흡광도와 지방 함량과의 상관 관계 분석 결과, 근적외 분광 분석법에 의한 지방 함량의 예측 모형의 개발은 적절하지 못하다고 판단되었다.
본 논문에서는 스마트 그리드 배전 계통에서 선로상의 고장으로부터 계통을 보호하기 위한 인공 신경 회로망을 기반으로 하는 고장 판단 방법론을 제안하였다. 제안된 방법론에서는 먼저 전류 실효값 크기를 기반으로 일반 고장 여부를 판단하고 다음, 정상 전류로 판단되는 경우 인공 신경 회로망을 기반으로 하는 normal/HIF classifier를 이용하여 고 임피던스 지락 고장 여부를 판단하도록 설계하였다. 반복적인 DSP 모듈 기반 알고리즘 검증 시험들 중에서, 실효 값 크기가 최소 동작전류보다 작은 정상 전류 파형 시험인 경우에 normal/HIF classifier가 전류 파형을 정상상태로 인식하여 부 동작하였으며, 반면에, 저 임피던스 고장의 경우는 고장 상태로 인식하여 정해진 절차에 따라 재폐로 동작을 보임으로써 제안된 방법론의 유효성을 확인할 수 있었다.
In the water purification plant, chemicals are injected for quick purification of raw water. It is clear that the amount of chemicals intrinsically depends on water quality such as turbidity, temperature, pH and alkalinity. However, the process of chemical reaction to improve water quality (e.g., turbidity) by chemicals is not yet fully clarified nor quantified. The feedback signal in the process of coagulant dosage, which should be measured (through the sensor of the plant) to compute the appropriate amount of chemicals, is also not available. Most traditional methods focus on judging the conditions of purifying reaction and determine the amounts of chemicals through manual operation of field experts using Jar-test data. In this paper, a systematic control strategy is proposed to derive the optimum dosage of coagulant, PAC(Polymerized Aluminium Chloride), using Jar-test results. A neural network model is developed for coagulant dosing and purifying process by means of six input variables (turbidity, temperature, pH, alkalinity of raw water, PAC feed rate, turbidity in flocculation) and one output variable, while considering the relationships to the reaction of coagulation and flocculation. The model is utilized to derive the optimum coagulant dosage (in the sense of minimizing turbidity of water in flocculator). The ability of the proposed control scheme validated through the field test has proved to be of considerable practical value.
본 논문에서는 다기능 근전의수를 제어하기 위해 전완에서 취득한 4 채널의 근전도로부터 9 가지 동작을 인식하는 새로운 방법을 제안한다. 비정상 신호특성을 가진 근전도를 해석하기 위해서 시간-주파수 영역에서 표현되는 특징벡터를 웨이블렛 패킷변환을 통해 추출한다. 높은 차원을 가지는 시간-주파수 특징벡터에 대하여 차원축소와 비선형변환을 수행하기 위해 PCA와 SOFM으로 구성된 특징투영 방법을 제안한다. PCA를 이용한 차원축소는 패턴분류기의 구조를 단순화하고 패턴인식을 위한 계산시간을 단축할 수 있다. SOFM을 이용한 비선형변환은 PCA에 의해 차원이 축소된 특징벡터를 새로운 공간으로 투영함으로써 클래스 분리도를 향상시킨다. 마지막으로 각 동작은 패턴분류기인 다층 신경회로망에 의해 인식된다. 실험 결과로부터 제안한 방법이 높은 인식률을 보임과 동시에 연속적인 패턴인식을 위한 실시간 구현이 가능함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.