• Title/Summary/Keyword: 신경회로망 제어

Search Result 616, Processing Time 0.023 seconds

Control Gain Optimization for Mobile Robots Using Neural Networks and Genetic Algorithms (신경회로망과 유전알고리즘에 기초한 이동로봇의 제어 이득 최적화)

  • Choi, Young-kiu;Park, Jin-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.698-706
    • /
    • 2016
  • In order to move mobile robots to desired locations in a minimum time, optimal control problems have to be solved; however, their analytic solutions are almost impossible to obtain due to robot nonlinear equations. This paper presents a method to get optimal control gains of mobile robots using genetic algorithms. Since the optimal control gains of mobile robots depend on the initial conditions, the initial condition range is discretized to form some grid points, and genetic algorithms are applied to provide the optimal control gains for the corresponding grid points. The optimal control gains for general initial conditions may be obtained by use of neural networks. So the optimal control gains and the corresponding grid points are used to train neural networks. The trained neural networks can supply pseudo-optimal control gains. Finally simulation studies have been conducted to verify the effectiveness of the method presented in this paper.

An Implementation of the Controller for Intelligent Process System using Neural Network (신경회로망을 이용한 지능형 가공 시스템 제어기 구현)

  • 김관형;강성인;이태오
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1135-1141
    • /
    • 2004
  • In this study, this system makes use of the analog infrared rays sensor and converts the feature of fish outline when sensor is operating with CPU(80C196KC). Then, after signal processing, this feature is classified a special feature and a outline of fish by using the neural network, one of the artificial intelligence scheme. This neural network classifies fish pattern of very simple and short calculation. This has linear activation function and the error back propagation is used as a teaming algorithm. And the neural network is learned in off-line process. Because an adaptation period of neural network is too long when random initial weights are used, off-line teaming is induced to decrease the progress time.

The injection petrol control system about CMAC neural networks (CMAC 신경회로망을 이용한 가솔린 분사 제어 시스템에 관한 연구)

  • Han, Ya-Jun;Tack, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.395-400
    • /
    • 2017
  • The paper discussed the air-to-fuel ratio control of automotive fuel-injection systems using the cerebellar model articulation controller(CMAC) neural network. Because of the internal combustion engines and fuel-injection's dynamics is extremely nonlinear, it leads to the discontinuous of the fuel-injection and the traditional method of control based on table look up has the question of control accuracy low. The advantages about CMAC neural network are distributed storage information, parallel processing information, self-organizing and self-educated function. The unique structure of CMAC neural network and the processing method lets it have extensive application. In addition, by analyzing the output characteristics of oxygen sensor, calculating the rate of fuel-injection to maintain the air-to-fuel ratio. The CMAC may easily compensate for time delay. Experimental results proved that the way is more good than traditional for petrol control and the CMAC fuel-injection controller can keep ideal mixing ratio (A/F) for engine at any working conditions. The performance of power and economy is evidently improved.

A Study on Tools for Implementing High-speed Neural Network (신경회로망의 고속 구현 방법에 관한 연구)

  • Kim, Pyong-Kun;Kim, Doo-Sik;Lee, Sang-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.377-380
    • /
    • 2002
  • 신경회로망은 문자인식, 자동제어 등의 여러 분야에 널리 쓰이는 방식이다. 그러나 신경회로망을 구현하는데는 연산량이 많아서 실시간으로 구현하기에 어려움이 많이 따른다. 본 논문은 신경회로망을 구현하는데 필요한 연산을 살펴보고 그 연산을 구현하는 방법을 비교 분석하였다. 신경회로망을 구현하기 위해 DSP(Digital Signal Processor), PC의 FPU(Floating Point Unit), Intel사의 Pentium 계열 프로세서에서 지원하는 SIMD(Single Instruction Multiple Data) 기술을 사용하여 결과를 비교 분석 하였다. 신경회로망의 핵심인 MLP(Multi Layer Perceptron) 연산에 대해 실험한 결과 SIMD 기술을 이용하는 방법이 다른 방법에 비해 2배이상 좋은 결과를 나타내었다.

  • PDF

Design of Adaptive Fuzzy Logic Controller Using Real-Coding Genetic Algorithm and Neural Network (실수형 유전알고리즘과 신경회로망을 이용한 적응 퍼지제어기의 설계)

  • Nam, Jing-Rak;Kim, Dong-Wan;Hwang, Gi-Hyun;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.115-121
    • /
    • 2000
  • 본 논문에서는 진화연산 중에서 해의 다양성과 수렴속도면에서 좋은 성능을 나타내는 실수형 유전알고리즘과 신경회로망을 이용한 적응 퍼지제어기를 설계하였다. 실수형 유전알고리즘을 이용하여 퍼지제어기의 입 출력 이득과 실시간으로 퍼지제어기의 입 출력이득을 적응적으로 변경하는 신경회로망의 가중치를 튜닝하였다. 제안한 방법의 유용성을 평가하기 위해 시지연을 갖는 제어시스템[14]에 적용하였다. 컴퓨터 시뮬레이션 결과, 제안한 적응 퍼지제어기가 기존의 퍼지제어기보다 오버슈트, 정정시간, 상승시간면에서 더 우수한 제어성능을 나타내었다.

  • PDF

Attitude Control of Model Helicopter systems using the WAVENET (WAVENET을 이용한 모형 헬리콥터 시스템의 자세 제어)

  • 박두환;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.307-310
    • /
    • 2003
  • 본 논문에서는 대표적인 비선형 동특성을 가지는 실제 헬리콥터의 회전 띤 자세 운동을 근사화한 모형 헬리콥터의 시스템을 소개하고 이 시스템의 정지 자세 제어를 목표로 직접 적응 웨이브렛 신경회로망 제어기를 다음의 과정에 의해 만든다. 우선 상태 공간에 적용할 웨이브렛 기준 함수를 정의하고 나서 제어기로 들어오는 입력 값의 대략적인 범위와 특성을 파악해서 웨이브렛 이론에 근거해 신축(dilation)과 이동(traslation) 변수 값을 선택하여 초기 적응 웨이브렛 신경회로망 제어기를 건설한다. 마지막으로 시스템의 안정화 제어를 위하여 선택, 교배, 돌연변이의 진화연산자에 의해 일시에 최적의 구조와 결합가중치로 진화시켜 가는 새로운 형태의 ENNC를 제안하여 연결 가중치(weight)를 조정한다. 이 직접 적응 웨이브렛 신경회로망 제어기를 비선형 시스템인 모형 헬리콥터 시뮬레이터에 적용하여 제안한 제어기의 견실성 및 그 우수성을 입증하고자 한다.

  • PDF

Nonlinear Control of Network based Systems with Random Time Delays using Intelligent Algorithms (지능형 알고리즘을 이용한 랜덤 시간지연을 갖는 네트워크 기반 시스템의 비선형 제어)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.660-667
    • /
    • 2007
  • 본 논문은 확률특성을 갖는 네트워크 기반 제어시스템(NCS; Networked Control Systems)을 위하여 동적 베이시안 네트워크(DBN; Dynamic Bayesian Networks)와 신경회로망 기법을 이용한 지능제어기법을 제안한다. 신경회로망은 시변 시간지연을 갖는 비선형 시스템의 실시간 오차를 보상하기 위한 제어기의 최적화에 적용된다. 모듈화 신경회로망이 구성되며 이것은 제어기의 파라미터를 출력한다 가장 간단한 DBN 구조인 마코브 체인(MC; Markov Chain)이 구성되며 NCS의 랜덤 관측값을 모델링에 적용되며 예측 제어기의 구성에 또한 사용된다. 제안한 제어기법은 위성시스템의 자세제어에 적용하여 컴퓨터 시뮬레이션을 통해 성능을 검증하였다.

Design of a Self-tuning Controller with a PID Structure Using Neural Network (신경회로망을 이용한 PID구조를 갖는 자기동조제어기의 설계)

  • Cho, Won-Chul;Jeong, In-Gab;Shim, Tae-Eun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.1-8
    • /
    • 2002
  • This paper presents a generalized minimum-variance self-tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior and time delays. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation is done to adapt the nonlinear nonminimum phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct adaptive controller using neural network.

A Study on the Sensorless Speed Control of Induction Motor by New Direct Torque Control (새로운 직접토크제어에 의한 유도전동기의 센서리스 속도제어)

  • Kim, Jong-Su;Seo, Dong-Hoan;Kim, Seung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1105-1110
    • /
    • 2011
  • This paper presents an improved direct torque control based on artificial neural networks technique. The major problem that is usually associated with DTC drive is the high torque(speed) ripple. To overcome this problem a torque hysteresis band with variable amplitude is proposed based on artificial neural networks. The artificial neural networks proposed controller is shown to be able to reducing the torque(speed) ripple and dependency on motor parameter and to improve performance DTC especially at high speed and reversal running.

Neuro-controller design for the line of sight stabilization system containing nonlinear friction (비선형 마찰이 존재하는 조준경 안정화 시스템의 신경망 제어기 설계)

  • Jang, Jun-Oh;Jeon, Byung-Gyoon;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.139-148
    • /
    • 1997
  • 본 논문에서는 비선형 마찰이 존재하는 조준경 안정화 시스템에 대해서 마찰력 보상과 성능개선을 위한 신경망제어기의 설계방법을 제시한다. 제안한 신경망제어기는 비례, 적분, 진상(PI/LEAD) 제어기와 신경회로망과의 병렬로 구성되며, 제어 목적은 비선형 마찰과 외란이 존재하여도 안정거울의 각속도 추적성능과 안정화 성능의 향상에 있다. 신경회로망의 입력으로 안정거울의 각속도 추적오차와 추적오차의 적분, 제어입력이 필터를 통과한 신호가 사용되며, 신경호로망은 간접학습구조에 의해 학습된다. 조준경 시스템의 비선형 마찰력인 쿨롱마찰력의 크기가 외부환경에 따라 변하는 경우와 시스템으로 외란이 인가되는 경우에 대하여도 제안한 병렬제어기는 기존의 PI/LEAD 제어기보다 추적과 안정화 성능면에서 우수함을 컴퓨터 모의 실험으로 확인한다.

  • PDF