• 제목/요약/키워드: 신경회로망 제어

검색결과 616건 처리시간 0.026초

신경회로망 자기종조 PID 제어기를 이용한 전력계통의 부하주파수제어에 관한 연구 (A Study on the Load Frequency control of Power System Using Neural Network Self Tuning PID Controller)

  • 정형환;김상효;주석민;김경훈
    • 한국지능시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.29-38
    • /
    • 1998
  • 본 논문에서는 부하외란이 발생할 경우 2지역 전력계통의 부하주파수 제어 즉, 각 지역내의 주파수 및 연계선 조류편차가 허용치 내로 신속히 수렴하도록 하기 위하여 신경회로망 자기동조 PID 제어기를 제안하였다. 시뮬레이션에 사용된 신경회로망은 입력층에 2개, 중간층에 10개, 출력층에 3개의 뉴런으로 구성하였다. 2개의 입력층 뉴런은 시스템의 오차와 오차 변화율이 입력되게 하였고 출력층은 PID 제어기의 파라미터에 해당하는 3개의 뉴런으로 구성하였다.시뮬레이션 결과 본 논문에서 제안한 신경회로망 자기동조 PID 제어기는 종래의 제어기법(Optimal, PID)보다 동특성 응답과 제어 성능이 우수한 제어기임을 알 수 있었다.

  • PDF

신경회로망 PID 제어기를 이용한 이동로봇의 군집제어 (Formation Control of Mobile Robots using PID Controller with Neural Networks)

  • 김용백;박진현;최영규
    • 한국정보통신학회논문지
    • /
    • 제18권8호
    • /
    • pp.1811-1817
    • /
    • 2014
  • 본 논문은 선도 로봇을 추종 로봇이 일정거리와 각도를 두고 추종하는 군집제어에서, 추종 로봇의 질량이 변할 경우, 신경회로망을 통해 보간된 이득을 갖는 PID제어기를 제안한다. 전체 제어시스템은 기구학 제어기와 동역학을 고려한 동적제어기로 구성하였다. 동적제어기는 가변 이득을 가지는 PID 제어기로 구성하여, 추종 로봇의 대표적 질량에 따라 적절한 PID 이득을 유전 알고리즘으로 구하였다. 유전 알고리즘으로 구한 데이터를 기초로 신경회로망을 학습하여 추종 로봇이 임의의 질량을 갖더라도 최적의 PID 이득을 선정할 수 있었다. 모의실험에서 추종 로봇의 질량이 임의의 값으로 변화하는 경우, 신경회로망을 통해 보간된 이득을 갖는 PID 제어기가 고정된 이득을 가지는 PID 제어기에 비해 군집제어에서 추종 성능을 향상시키는 것을 확인하였다.

신경망에 의한 외란 관측을 통한 3축 안정화 인공위성의 자세제어 (3-axis stabilized spacecraft attitude control by neural network disturbance observer)

  • 한기혁;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.1-1
    • /
    • 2000
  • 본 논문에서는 3축이 연성되어 비선형 운동 방정식으로 표현되는 3축 안정화 인공위성 시스뎀에 입릭외란과 시스템의 불확실성이 존재할 경우에도 자제 정밀도를 유지하는 제어기를 설계한다. 비선헝 운동 방정식으로 표현되는 운동 방정식을 선형화하고 PID제어기를 구성하였다 선형화에 의한 시스템의 불확실성과 입력 외란을 신경회로망으로 추정하여 외란의 엉향을 제거하도록 구성된 PR제어기의 제어입력을 수정한다 수정된 제어입력은 외란을 상쇠시켜 시스템 출력에서 외란의 효과를 제거하게 된다. 신경회로망은 제어입력과 시스템 출력, 기준 운동 방정식간의 관계를 이용하여 외간과 시스템의 불확실성을 추정하며, 역전파 알고리즘을 사용한 학습 알고리즘으로 신경 회로망을 교육한다. 제안된 신경회로망을 이용한 외란 제거 제어기는 시뮬레이션을 통하여 자세 정밀도의 향상을 검증한다

변형된 Elman 신경회로망을 이용한 제어방식 (A Control Method using the modified Elman Neural Network)

  • 최우승;김주동
    • 한국컴퓨터정보학회논문지
    • /
    • 제4권3호
    • /
    • pp.67-72
    • /
    • 1999
  • 신경회로망은 학습능력과 근사화 능력으로 말미암아 패턴인식 및 시스템제어분야에서 많이 사용되고 있으며, 입력층. 출력층. 하나 이상의 은닉층으로 구성된 네드워크이다. Elman 신경회로망은 J. Elman에 의해 제안되었으며. recurrent network의 형태로 구성되어 있다. Elman 신경회로망은 기존의 신경회로망에 context층을 새로 추가하여, 은닉층의 출력을 context층의 입력으로 피드백 하는 구조로 되어 있다. 본 논문에서는 새로운 형태의 Elman 신경회로망을 제안한다. 제안한 방식은 Elman 신경회로망을 변형한 형태로. 은닉층 뿐 만 아니라 출력층의 출력도 context층으로 피드백 하는 형태이다. 제안한 방식의 유용성을 확인하기 위해 multi target system에 적용한다. 시뮬레이션 결과는 제안한 방식이 기존의 신경회로망 및 Elman 신경회로망 보다 우수한 방식임을 보여 주고 있다.

신경회로망을 이용한 동적 시스템의 상태 공간 인식 모델 (The State Space Identification Model of the Dynamic System using Neural Networks)

  • 이재현;탁환호;이상배
    • 한국지능시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.442-448
    • /
    • 2000
  • 전통적인 동적 시스템의 제어에는 제어대상의 정확한 수학적 모델링이 필요하다. 그러나 동적 시스템의 모델링은 복잡한 상태방정식과 많은 제어파라메터들에 의해 매우 복잡한 계산과정을 필요로 한다. 그러므로, 본 논문에서는 신경회로망을 이용한 동적 시스템의 상태 공간 인식 모델을 제안하였으며, 제안된 신경회로망을 학습시키기 위하여 가우스-뉴턴 방법을 사용하였다. 본 논문에서 제안된 신경회로망 모델은 시소 시스템 인식문제를 컴퓨터 모이실험을 통해 효과적임을 보였다.

  • PDF

신경회로망을 이용한 PWM 인버터의 적응 히스테리시스 전류제어 기법 (A Method for Adaptive Hysteresis Current Control of PWM Inverter Using Neural Network)

  • 전태원;최명규
    • 전력전자학회논문지
    • /
    • 제3권4호
    • /
    • pp.382-387
    • /
    • 1998
  • 본 논문은 신경회로망을 사용하여 PWM인버터의 스위칭주파수를 일정하게 유지시키기 위한 적응 히스테리시스 밴드 전류제어 방식을 제안하였다. 신경회로망의 지도신호로 중성점전압을 고려한 적응 히스테리시스 밴드 식을 유도하고, 이 전류제어에 적합한 신경회로망의 구조 및 학습 알고리즘을 제시하였다. 시뮬레이션을 통하여 전동기의 동작 상태에 관계없이 스위칭 주파수를 거의 일정하게 유지되며, 전류의 과도응답 특성의 우수함을 확인하였다.

  • PDF

두 팔 달린 두 바퀴 형태의 모바일 역진자 시스템의 신경회로망 제어 (Neural Network Control of a Two Wheeled Mobile Inverted Pendulum System with Two Arms)

  • 노진석;김현욱;정슬
    • 한국지능시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.652-658
    • /
    • 2010
  • 본 논문에서는 밸런싱 메커니즘의 두 바퀴 형태의 이동로봇(Two Wheeled Mobile Robot:TWMR)을 구현하고 제어한다. TWMR은 역진자 시스템과 이동로봇을 합친 모바일 역진자 구조로 기존의 막대 형태의 진자대신 두 팔 달린 로봇 형태를 나타낸다. 각도와 위치에 대한 동시제어에 있어 외란에 대한 강건성을 부여하기 위해 RBF 신경회로망 제어 방식을 사용한다. 신경회로망 제어 방식으로는 입력보상 방식(RCT)을 사용하여 제어기의 성능을 실험을 통해 검증한다. 또한 원격으로 제어가능하게 하도록 시스템을 구현하여 실험하였다.

로봇 동역학 제어를 위한 인공신경회로망 적용 연구 (Application of Neural Networks in Robot Dynamics Control)

  • 조용중;이상훈;송지혁;이성범;김상우;오세영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.326-328
    • /
    • 2000
  • 인공신경회로망 기술은 선형 또는 비선형성 계산 문제를 복잡도에 무관하게 학습에 의해 자동으로 근사한다. 또한 알고리즘이 단순하며 잡음에 강하여 다양한 분야에 적용되고 있다. 반면 대상시스템의 특성이나 조건이 변경되면 계산성능을 보장할 수 없고, 계산의 신뢰성 보장 한계가 모호하기 때문에 제어문제에는 실용화가 어려운 것으로 알려져 있다. 제안 모델은 인공신경회로망의 장점을 유지하면서, 위와 같은 문제점을 해결한다. 시뮬레이션을 통하여 제안 모델은 기존 제어기에 비해 우수한 추종제어성능을 보이는 것으로 밝혀졌다.

  • PDF

퍼지-신경회로망과 PLL을 이용한 교류서보시스템 (A.C. Servo System Using Fuzzy-Neural Network and PLL)

  • 김진식;이현관;엄기환
    • 조명전기설비학회논문지
    • /
    • 제12권3호
    • /
    • pp.139-146
    • /
    • 1998
  • 교류 서보시스템의 고속.고정밀 제어를 위하여 혼합형 지능제어방식을 제안하였다. 제안한 제어방식은 먼저 고속제어를 위하여 퍼지-신경회로망 제어방식올 이용하고 오차가 설정된 범위안에 들어오변 PLL 제어방식을 이용한다. 제안한 제어방식올 3상 유도전동기의 속도제어에 대한 시뮬레이션 및 실험을 통하여 기폰의 퍼지-신경회로망 제어방식과 제어성능을 비교 검토한 결과 우수함을 확인하였다.

  • PDF