• 제목/요약/키워드: 신경회로망 제어

검색결과 616건 처리시간 0.028초

신경회로망과 퍼지 규칙을 이용한 인쇄회로 기판상의 납땜 형상검사 (Solder Joint Inspection Using a Neural Network and Fuzzy Rule-Based Classification Method)

  • 고국원;조형석;김종형;김성권
    • 제어로봇시스템학회논문지
    • /
    • 제6권8호
    • /
    • pp.710-718
    • /
    • 2000
  • In this paper we described an approach to automation of visual inspection of solder joint defects of SMC(Surface Mounted Components) on PCBs(Printed Circuit Board) by using neural network and fuzzy rule-based classification method. Inherently the surface of the solder joints is curved tiny and specular reflective it induces difficulty of taking good image of the solder joints. And the shape of the solder joints tends to greatly vary with the soldering condition and the shapes are not identical to each other even though the solder joints belong to a set of the same soldering quality. This problem makes it difficult to classify the solder joints according to their qualities. Neural network and fuzzy rule-based classification method is proposed to effi-ciently make human-like classification criteria of the solder joint shapes. The performance of the proposed approach is tested on numerous samples of commercial computer PCB boards and compared with the results of the human inspector performance and the conventional Kohonen network.

  • PDF

퍼지 추론 시스템 기반의 다중 신경회로망 제어기를 이용한 초음파 모터의 위치제어 (Fuzzy Inference System Based Multiple Neural Network Controllers for Position Control of Ultrasonic Motor)

  • 최재원;민병우;박운식
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.209-218
    • /
    • 2001
  • Ultrasonic motors are newly developed motors which are expected to be useful as actuators in many practical systems such as robot arms or manipulators because of several advantages against the electromagnetic motors. However, the precise control of the ultrasonic motor is generally difficult due to the absence of appropriate and rigorous mathematical model. Furthermore, owing to heavy nonlinearity, the position control of a pendulum system driven by the ultrasonic motor has a problem that control method using multiple neural network controllers based on a fuzzy inference system that can determine the initial position of the pendulum in the beginning of control operation. In addition, and appropriate neural network controller that has been learned to operate well at the corresponding initial position is adopted by switching schemes. The effectiveness of the proposed method was verified and evaluated from real experiments.

  • PDF

퍼지뉴럴 시스템을 위한 초기 입력공간분할의 최적화 : Measure of Fuzziness (The Optimal Partition of Initial Input Space for Fuzzy Neural System : Measure of Fuzziness)

  • 백덕수;박인규
    • 대한전자공학회논문지TE
    • /
    • 제39권3호
    • /
    • pp.97-104
    • /
    • 2002
  • 이 논문에서는 퍼지뉴럴 시스템을 위하여 measure of fuzziness에 의한 입력공간의 분할을 최적화하는 방법을 제안한다. 이에 따라 최적화된 퍼지 부공간에 대하여 퍼지 제어규칙을 자동으로 생성하는 방법을 제안한다. 또한 시계열 예측 문제에서 입력패턴의 간격을 조정하여 그 성능을 검증한다. 이 방법은 샤논 함수와 index of fuzziness를 이용하여 입력공간을 분할하고, 분할된 부 공간에 대해 입력 데이터와 부합할 수 있는 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 최적의 규칙베이스를 구성하도록 한다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 최대 급경사 강하법에 의해 적응되어진다. 제안된 알고리즘을 토대로 여덟 가지의 입력패턴에 대하여 추론한 결과 입력공간의 최적분할에 의하여 수렴과정에서 초기에 오차(RMSE)가 빠르게 수렴함을 알 수 있었다.

신경회로망을 이용한 이산 비선형 재형상 비행제어시스템 (Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks)

  • 신동호;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제10권2호
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

백스테핑기법과 신경회로망을 이용한 적응 재형상 비행제어법칙 (Reconfigurable Flight Control Law Using Adaptive Neural Networks and Backstepping Technique)

  • 신동호;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.329-339
    • /
    • 2003
  • A neural network based adaptive controller design method is proposed for reconfigurable flight control systems in the presence of variations in aerodynamic coefficients or control effectiveness decrease caused by control surface damage. The neural network based adaptive nonlinear controller is developed by making use of the backstepping technique for command following of the angle of attack, sideslip angle, and bank angle. On-line teaming neural networks are implemented to guarantee reconfigurability and robustness to the uncertainties caused by aerodynamic coefficients variations. The main feature of the proposed controller is that the adaptive controller is designed with assumption that not any of the nonlinear functions of the system is known accurately, whereas most of the previous works assume that only some of the nonlinear functions are unknown. Neural networks loam through the weight update rules that are derived from the Lyapunov control theory. The closed-loop stability of the error states is also investigated according to the Lyapunov theory. A nonlinear dynamic model of an F-16 aircraft is used to demonstrate the effectiveness of the proposed control law.

레이저 센서 기반의 Cascaded 제어기 및 신경회로망을 이용한 이동로봇의 위치 추종 실험적 연구 (Experimental Studies of a Cascaded Controller with a Neural Network for Position Tracking Control of a Mobile Robot Based on a Laser Sensor)

  • 장평수;장은수;전상운;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.625-633
    • /
    • 2004
  • In this paper, position control of a car-like mobile robot using a neural network is presented. positional information of the mobile robot is given by a laser range finder located remotely through wireless communication. The heading angle is measured by a gyro sensor. Considering these two sensor information as a reference, the robot posture is corrected by a cascaded controller. To improve the tracking performance, a neural network with a cascaded controller is used to compensate for any uncertainty in the robot. The neural network functions as a compensator to minimize the positional errors in on-line fashion. A car-like mobile robot is built as a test-bed and experimental studies of several controllers are conducted and compared. Experimental results show that the best position control performance can be achieved by a cascaded controller with a neural network.

상대분할 신경회로망에 의한 자율주행차량 도로추적 제어기의 개발 (Development of Road-Following Controller for Autonomous Vehicle using Relative Similarity Modular Network)

  • 류영재;임영철
    • 제어로봇시스템학회논문지
    • /
    • 제5권5호
    • /
    • pp.550-557
    • /
    • 1999
  • This paper describes a road-following controller using the proposed neural network for autonomous vehicle. Road-following with visual sensor like camera requires intelligent control algorithm because analysis of relation from road image to steering control is complex. The proposed neural network, relative similarity modular network(RSMN), is composed of some learning networks and a partitioniing network. The partitioning network divides input space into multiple sections by similarity of input data. Because divided section has simlar input patterns, RSMN can learn nonlinear relation such as road-following with visual control easily. Visual control uses two criteria on road image from camera; one is position of vanishing point of road, the other is slope of vanishing line of road. The controller using neural network has input of two criteria and output of steering angle. To confirm performance of the proposed neural network controller, a software is developed to simulate vehicle dynamics, camera image generation, visual control, and road-following. Also, prototype autonomous electric vehicle is developed, and usefulness of the controller is verified by physical driving test.

  • PDF

적응 학습률을 이용한 신경회로망의 학습성능개선 및 로봇 제어 (Improvement of learning performance and control of a robot manipulator using neural network with adaptive learning rate)

  • 이보희;이택승;김진걸
    • 제어로봇시스템학회논문지
    • /
    • 제3권4호
    • /
    • pp.363-372
    • /
    • 1997
  • In this paper, the design and the implementation of the adaptive learning rate neural network controller for an articulate robot, which is being developed (or) has been developed in our Automatic Control Laboratory, are mainly discussed. The controller reduces software computational load via distributed processing method using multiple CPU's, and simplifies hardware structures by the time-division control with TMS32OC31 DSP chip. Proposed neural network controller with adaptive learning rate structure using expert's heuristics can improve learning speed. The proposed controller verifies its superiority by comparing response characteristics of conventional controller with those of the proposed controller that are obtained from the experiments for the 5 axis vertical articulated robot. We, also, present the generalization property of proposed controller for unlearned trajectory and the change of load through experimental data.

  • PDF

진화전략과 신경회로망에 의한 능도 현가장치의 제어기 설계 (A Controller Design for Active Suspension System Using Evolution Strategy and Neural Network)

  • 김대준;천종민;전향식;최영규;김성신
    • 제어로봇시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.209-217
    • /
    • 2001
  • In this paper, we propose a linear quadratic regulator(LQR) controller design for the active suspension using evolution strategy(ES) and neural network. We can improve the inherent suspension problem, the trade-off between ride quality and suspension travel by selecting appropriate weight in the LQR-objective function. Since any definite rules for selecting weights do not exist, we replace the designers trial-and-error method with ES that is an optimization algorithm. Using the ES, we can find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle. The relationship between the frequencies and proper control gains are generalized by use of the neural networks. When the vehicle is driven, the trained neural network is activated and provides the proper gains for operating frequencies. And we adopted double sky-hook control to protect car component when passing large bump. Effectiveness of our design has been shown compared to the conventional sky-hook controller through simulation studies.

  • PDF

멀티미디어 인터넷 전송을 위한 전송률 제어 요소의 신경회로망 모델링 (Modeling of Multimedia Internet Transmission Rate Control Factors Using Neural Networks)

  • 정길도;유성구
    • 제어로봇시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.385-391
    • /
    • 2005
  • As the Internet real-time multimedia applications increases, the bandwidth available to TCP connections is oppressed by the UDP traffic, result in the performance of overall system is extremely deteriorated. Therefore, developing a new transmission protocol is necessary. The TCP-friendly algorithm is an example satisfying this necessity. The TCP-Friendly Rate Control (TFRC) is an UDP-based protocol that controls the transmission rate that is based on the available round trip time (RTT) and the packet loss rate (PLR). In the data transmission processing, transmission rate is determined based on the conditions of the previous transmission period. If the one-step ahead predicted values of the control factors are available, the performance will be improved significantly. This paper proposes a prediction model of transmission rate control factors that will be used in the transmission rate control, which improves the performance of the networks. The model developed through this research is predicting one-step ahead variables of RTT and PLR. A multiplayer perceptron neural network is used as the prediction model and Levenberg-Marquardt algorithm is used for the training. The values of RTT and PLR were collected using TFRC protocol in the real system. The obtained prediction model is validated using new data set and the results show that the obtained model predicts the factors accurately.