• 제목/요약/키워드: 신경회로망 제어

검색결과 616건 처리시간 0.026초

신경최적화 회로를 이용한 로봇의 장애물 회피에 관한 연구 (A Study on the Obstacle Avoidance of a Robot Manipulator by Using the Neural Optimization Network)

  • 조용재;정낙영;한창수
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.267-276
    • /
    • 1993
  • 본 연구에서는 우선 네트워크의 기본 이론을 소개하고, 이를 바탕으로 로봇의 궤적계획에 이용하기 위한 변수, 구속조건, 에너지를 정의하며, 네트워크가 국부적 최 소 상태에 빠지는 것을 방지하기 위하여 Temperature Adding을 이용한 적절한 가중치 조절로 작업 공간상에 장애물이 정지하고 있는 경우와 장애물이 움직이는 경우, 같은 작업 공간상에서 동시에 움직이는 두 대의 로봇들의 충돌회피문제 등 여러 종류의 궤 적 계획 문제에 적용시켜 보고자 한다. 이와같이 궤적계획 문제를 신경회로를 이용 하여 다루게 되면, 신경회로망의 링크수나 장애물의 변화등 상황의 변화에 따르는 복 잡한 모델링 전개가 필요 없어지고, 여유 자유도를 가지는 경우에도 별도의 성능지수 를 위한 인위적인 조작을 요구하는 알고리즘의 개발이 필요없이 스스로가 최소의 에너 지 상태를 찾아가게 되며, 병렬실(parallel processing) 계산방식으로 각 링크의 위치 를 동시에 구할 수 있게 되어 실시간 제어의 가능성을 제시하여 준다.

신경망을 이용한 자율이동로봇의 이동 경로 추종 (Moving Path Following of Autonomous Mobile Robot using Neural Network)

  • 주기세
    • 한국정보통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.585-594
    • /
    • 2000
  • 생산현장이나 불확실한 환경에서 자율이동로봇의 정확한 경로 추종은 고전적 제어 알고리즘인 경우에 많은 단점을 갖고 있다. 본 논문에서는 오류 역전파 알고리즘을 기반으로 한 신경망을 이용하여 이동로봇이 바닥 위에 설치된 선을 따라갈 수 있도록 하였다. 로봇에 부착된 3 개의 센서들로부터 인식된 정보뿐만 아니라 센서들이 인식하지 못하는 영역에서도 10등분된 세밀한 정보가 입력패턴으로 학습되기 때문에 센서들이 인식하지 못하는 영역에서도 이동로봇은 라인을 따라 원활하게 이동한다. 로봇이 목적지까지 이동하는데 걸리는 시간이 단축되고 라인과의 오차를 최소화하는 효과를 가져온다. 제안된 신경회로망 제어기의 효과를 검증하기 위하여 이동로봇의 이동 각의 변화에 따른 두개의 모터의 속도 변화가 컴퓨터로 시뮬레이션 된다.

  • PDF

적응 뉴로-퍼지 제어기를 이용한 비선형 시스템의 안정화 제어 (Stabilization Control of Nonlinear System Using Adaptive Neuro-Fuzzy Controller)

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Gue
    • 한국정보통신학회논문지
    • /
    • 제5권4호
    • /
    • pp.730-737
    • /
    • 2001
  • 본 논문에서는 적응 뉴로-퍼지 제어기를 이용하여 비선형 복합시스템 모델의 안정화 제어 방법에 적용한다. 제안된 적응 뉴로-퍼지 제어기는 언어적 퍼지추론, 프로세스의 입출력 데이터를 이용하는 신경회로망, 최적이론 등이 포함된 인공지능을 시스템구조와 파라메터 검증에 필요한 도구로 이용한다. 그 결과 제안된 방법이 이전에 연구되었던 다른 방법보다 아주 높은 인공지능 모델을 제시하였다.

  • PDF

로봇 매니퓰레이터의 신경 제어기 구현과 신경회로망 비교연구 (The Comparison and Implementation of Neural Controllers for Robot Manipulator)

  • 이재원;장철훈;정영창;홍철호;김정도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.61-65
    • /
    • 1997
  • In control of complex system, like robot manipulators, BP neural network have several drawbacks. To overcome this problems, the modified BP neural networks have proposed To find neural network of proper structure for robot manipulator, in this paper, actual experiments using ADSP-21020 for SCARA robot were implemented and have shown the possibility of real-time control and industrial application, without neural chip.

  • PDF

히스테리시스 앞먹임과 신경회로망을 이용한 압전 구동기의 정밀 위치제어 (Precision Position Control of Piezoelectric Actuator Using Feedforward Hysteresis Compensation and Neural Network)

  • 김형석;이수희;안경관;이병룡
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.94-101
    • /
    • 2005
  • This work proposes a new method for describing the hysteresis non-linearity of a piezoelectric actuator. The hysteresis behaviour of piezoelectric actuators, including the minor loop trajectory, are modeled by geometrical relationship between a reference major loop and its minor loops. This hysteresis model is transformed into inverse hysteresis model in order to output compensated voltage with regard to the given input displacement. A feedforward neural network, which is trained by a feedback PID control module, is incorporated to the inverse hysteresis model to compensate unknown dynamics of the piezoelectric system. To show the feasibility of the proposed feedforward-feedback controller, some experiments have been carried out and the tracking performance was compared to that of simple PTD controller.

뉴럴 네트워크의 브레인 컴퓨팅 (Neural Nets and Brain Computing)

  • 김응수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.24-26
    • /
    • 1996
  • 뇌는 신경세포로 이루어진 거대한 시스템이다. 이러한 뇌의 특징은 자기조직 시스템이면서 외계의 정보구조에 맞추어서 자신의 능력을 높일 수 있다는 것이다. 또한 뇌는 병렬정보처리 방식을 대폭적으로 채용한 시스템으로서 제어기구가 전체적으로 분산되어 있다. 이러한 뇌의 동작은 구조적으로 안정적이며 그 구성소자가 어느 정도 파괴되더라도 우수한 동작특성을 유지할 수 있다. 이것은 뇌에 있어서 정보가 거시화 및 분산화 되어 있다는 증거이며, 연상기억과 내용 어드레스 기억 등과 같은 탁월한 기억방식을 실현할 뿐만 아니라 망각능력도 가지고 있다. 현실의 뇌 그 자체를 조사하는 것이 어려운 상황에서는 뇌에 관한 여러 가지 모델을 만들고 이 모델을 구체적으로 상세히 조사함으로써 현실의 뇌를 이해하고자하는 방법이 중요시 된다. 본 강연에서는 이러한 구성적 방법론의 필요성 및 뇌의 생리학적 측면, 뇌의 모델로서의 측면 그리고 신경회로망의 발전단계와 뇌 과학의 세계적 연구동향에 관하여 살펴본다.

  • PDF

多入力 시스템의 자율학습제어를 위한 차등책임 적응비평학습 (Differentially Responsible Adaptive Critic Learning ( DRACL ) for the Self-Learning Control of Multiple-Input System)

  • 김형석
    • 전자공학회논문지S
    • /
    • 제36S권2호
    • /
    • pp.28-37
    • /
    • 1999
  • 재 강화 학습 방법을 다수의 제어입력을 가진 시스템에 대한 자율적 제어 기법 습득에 활용하기 위해서 차등책임 적응비평 학습구조를 제안하였다. 재 강화 학습은 여러 단계의 제어동작 끝에 얻어지는 최종 비평값을 활용하여 그 전에 행해졌던 제어 동작을 강화 혹은 약화 학습하는 자율적 학습방법이다. 대표적인 재강화학습 방법은 적응비평학습 구조를 이용하는 방법인데 비평모듈과 동작모듈을 이용하여 외부 비평 값을 최대로 활용함으로써 학습효과를 극대화시키는 방법이다. 이 학습방법에서는 단일한 제어입력을 갖는 시스템으로만 적용이 제한된다는 단점이 있다. 제안한 차등책임 적응비평 학습 구조에서는 비평함수를 제어 입력 인자의 함수로 구축한 다음 제어인자에 대한 차별 화된 비평 값을 부분미분을 통하여 산출함으로써 다수의 제어입력을 가진 시스템의 제어기술 학습이 가능하게 하였다. 제안한 학습제어 구조는 학습속도가 빠른 CMAC 신경회로망을 이용하여 구축하였으며 2개의 제어입력을 갖는 2-D Cart-Pole 시스템과 3 개의 제어입력을 갖는 인간구조 로봇시스템의 앉는 동작의 학습제어 시뮬레이션을 통하여 효용성을 확인하였다.

  • PDF

퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링 (Fuzzy Neural System Modeling using Fuzzy Entropy)

  • 박인규
    • 한국멀티미디어학회논문지
    • /
    • 제3권2호
    • /
    • pp.201-208
    • /
    • 2000
  • 이 논문에서는 시계열 예측을 위하여 퍼지 엔트로피에 의한 입력공간의 분할과 퍼지 제어규칙을 자동으로 생성하는 방법을 제안하고, Mackey-Glass 데이터 Set을 이용한 시계열 예측 문제에 적용하여 그 성능을 검증한다. 이 방법은 샤논 함수와 퍼지 엔트로피 함수를 이용하여 입력공간을 분할하고, 분할된 부 공간에 대해 이력 데이터와 부합할 수 있는 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 최적의 규칙베이스를 구성하도록 한다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 최대 급경사 강하법에 의해 적응되어진다. 제안되는 알고리즘을 매개변수의 수를 줄이기 위하여 제어 규칙의 결론부의 출력값은 신경망의 가중치로 구성하여 퍼지 신경망의 복잡도를 줄임으로서 추론형과 기술형 접근법을 혼합한 형태의 학습 알고리즘이다.

  • PDF

유전알고리즘.신경회로망.퍼지논리가 결합된 지능제어기의 구현 (Realization of Intelligence Controller Using Genetic Algorithm.Neural Network.Fuzzy Logic)

  • 이상부;김형수
    • 디지털콘텐츠학회 논문지
    • /
    • 제2권1호
    • /
    • pp.51-61
    • /
    • 2001
  • 퍼지 제어기(FLC)는 고전적인 제어기 보다 외란에 강하고 초기치에 대한 과도응답도 우수할 뿐만 아니라 시스템의 수학적 모델과 파라메터 값을 알지 못하더라도 적절한 제어가 가능하다. 그러나 퍼지 제어기의 제어 규칙 생성은 전문가의 경험과 일단 결정된 제어 규칙은 고정됨으로 인해 제어 시스템의 환경변화에 적응할 수 없는 한계성이 있다. 또한 제어기의 출력값은 미세한 오차를 가지곤 있어 정확한 목표 값에 수렴할 수 없다. 이러한 미세한 오차를 없애기 위하여 여러 가지 방법이 연구되고 있는데, 본 논문에서는 FLC에 NN(Neural Network)과 GA(Genetic Algorithm)를 결합한 GA-FNNIC(유전알고리즘-퍼지 신경망 지능 제어기 : Genetic Algorithm - Fuzzy Neural network Intelligence Controller)를 제안한다. 제안된 GA-FNNIC와 FLC 제어기 간의 출력 특성, 수렴속도, 과도특성과 상승시간에 대해 비교 분석하고, 최종적으로 본 GA-FNNIC가 오차없이 목표치에 정확하게 수렴하는 것을 보인다.

  • PDF

AGV의 주행 제어를 위한 면역 알고리즘 적응 제어기 실현에 관한 연구 (A Study on Implementation of Immune Algorithm Adaptive Controller for AGV Driving Control)

  • 이영진;이진우;손주한;이권순
    • 한국항만학회지
    • /
    • 제14권2호
    • /
    • pp.187-197
    • /
    • 2000
  • In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied to the driving control of the autonomous guided vehicle(AGV). When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged by the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined through this off-line manner, these parameters are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted more accurately through the on-line fine tuning. The experiment for the control of steering and speed of AGV is performed. The results show that the proposed controller provides better performances than other conventional controllers.

  • PDF