• 제목/요약/키워드: 신경회로망 제어

검색결과 616건 처리시간 0.032초

피지이론과 유전알고리츰의 합성에 의한 Flexible Manipulator 제어기 설계 (Design of a Controller for a Flexible Manipulator Using Fuzzy Theory and Genetic Algorithm)

  • 이기성;조현철
    • 한국지능시스템학회논문지
    • /
    • 제12권1호
    • /
    • pp.61-66
    • /
    • 2002
  • 본 논문에서는 Flexible Manipulator의 제어를 위해 퍼지제어의 제약인 멤버쉽 함수, 퍼지규clr을 유전알고리즘으로 조정, 최적화 하는 새로운 제어기를 설계하였다. 사용된 유전알고리즘은 Steady State Genetic 알고리즘과 Adaptive 유전 알고리즘의 합성이다. 제안한 제어기는 Flexible Manipulator의 끝점 무게 0.8kmg, 최대속도 1m/s의 경우, 퍼지제어에 비해 오차가 90.8% 감소하고 신경회로망을 이용한 퍼지제어에 비하여는 31.8% 감소하였으며 진화전략과 퍼지제어합성에 의한 제어기보다는 오차가 31.3% 감소하는 통 제어성능과 그 유용성이 우수함을 확인하였다.

계층적 신경회로망을 사용한 변속선도 결정 (Decision of Shift-map Using Hierarchical Neural Network)

  • 최인찬;전홍태
    • 전자공학회논문지SC
    • /
    • 제48권1호
    • /
    • pp.18-23
    • /
    • 2011
  • 본 연구는 자동차에 장착된 일반적인 자동변속기의 문제점을 향상시키기 위해서 지능형 변속선도 결정 모듈을 제안한다. 전형적인 자동변속기의 변속선도는 운전자의 습관 및 성향이 반영되지 않기 때문에 운전자가 원하는 변속점을 제공하지 못한다. 기존의 변속선도는 불필요한 기어의 변화가 발생하고 연료효율에도 좋지 않다. 또한 가끔 킥-다운과 같은 현상이 발생한다. 그래서 본 논문에서는 개인적인 운전자의 운전 스타일을 고려한 변속선도를 결정하는 지능형 변속 제어 방법을 연구한다. 운전스타일은 주행 중인 자동차의 실제 데이터를 이용하여 운전자의 성향 및 운전 습관에 의해 판단된다. 이 모듈은 실제 자동차 데이터를 학습하기 위해 신경회로망을 사용한 계층적 구조로 구성된다. 제안된 지능형 변속선도 제 어 모듈은 각 운전자의 운전스타일에 따라 운전에 필요한 토크와 속도를 제공하여 운전자에게 적합한 변속점과 변속시간을 제공할 수 있다.

뉴로제어 및 반복학습제어 기법을 결합한 미지 비선형시스템의 적응학습제어 (Adaptive Learning Control fo rUnknown Monlinear Systems by Combining Neuro Control and Iterative Learning Control)

  • 최진영;박현주
    • 한국지능시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.9-15
    • /
    • 1998
  • 본 논문은 뉴로제어 및 반복학습 제어기법에 기반한 미지의 비선형시스템의 적응학습제어 방법을 제안한다. 제안된 제어 시스템에서 반복학습제어기는 새로운 기준 궤적에 대해 시스템의 출력이 원하는 궤적으로 정확히 수렴하도록 하는 적응과 단기간 제어정보를 기억하는 기능을 수행한다. 상대차수만 알고 있는 미지 시스템에 대한 박복학습 법칙이 학습이득은 신경회로망을 이용하여 추정된다. 반복학습제어기에 의해 습득된 제어정보는 장기메모리에 기반한 앞먹임 뉴로제어기로 이전되어 누적기억됨으로써 과거에 겸험된 기준 궤적에 대해서는 신속하게 추종할 수 있도록 한다. 2자유도 매니퓰레이터에 적용하여 제안된 기법의 타당성을 검증한다.

  • PDF

혼합형 학습규칙 신경 회로망을 이용한 제어 방식 (Control Method using Neural Network of Hybrid Learning Rule)

  • 임중규;이현관;권성훈;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 춘계종합학술대회
    • /
    • pp.370-374
    • /
    • 1999
  • 본 논문에서는 역전파 알고리즘과 헵 학습규칙의 장점을 최대한 살려 이용하고, 역전파 알고리즘의 문제점인 지역 최소점에 빠지는 경우와 학습시간이 느린 단점과 헵 학습규칙의 문제점인 학습 패턴의 저장능력이 매우 제한되고 선형적 분리가 되지 않는 복잡한 문제에는 적용할 수 없다는 단점등을 개선하기 위하여 혼합형 학습규칙을 제안한다. 제안하는 학습규칙은 입력층과 은닉층에 흔합형 학습규칙과 은닉층과 출력층에 역전파(Back-Propagation) 학습규칙을 적용한 혼합형이다. 제안한 혼합형 학습규칙을 이용한 신경회로망의 유용성을 확인하기 위하여 단일관절 매니플레이터를 이용하여 추종제어에 대한 시뮬레이션을 하여 기존의 역전파 알고리즘을 이용한 직접적응 제어 방식과 제어성능을 비교 검토한 결과 다음과 같은 특성을 확인하였다.

  • PDF

헤테로-시넵틱 신경회로망을 이용한 유압시스템의 진동제어 (Active vibration isolation of a hydraulic system using the hetero-synaptic neural network)

  • 정만실;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.273-277
    • /
    • 1995
  • Many hudraulic components have nonlinearities to some extent. These nonlinearities often cause the time delay, thus degrading the performance of the hydraulic control systems and making it difficult to modelthem. In this paper, a new vibration isolation control algorithm that eliminates the necessity of a sophiscated modeling of hydraulic system was proposed. The algotithm is a hybrid type control shecheme consisting of a linear controller and a hetero-synaptic neural network controller. Using this control scheme, simulations and experiments were performed for 1 DOF(Degree of freedom) and 2 DOF vibration isolation. The hybrid type control algorithm can isolate the base vibration signifcantly rather than linear control algorithm. And from the weights in hetero-synaptic neural network, we can get the 2nd equivalent differentialmodel of the hydraulic control system with on-line control operation. This equivalent model provides us with much information, such as stability and the characteristics of the control system.

  • PDF

SRM 드라이브의 운전성능 향상을 위한 스위칭각 특성에 관한 연구 (Study on Switching Angle Characteristics for Driving Performance Improvement of SRM Drive)

  • 오석규;최대완;안진우
    • 전력전자학회논문지
    • /
    • 제6권6호
    • /
    • pp.506-513
    • /
    • 2001
  • SRM의 토크는 상전류와 인덕턱스의 기울기에 따라 달라진다. 그러나 자기회로의 포화로 인하여 원하는 토크를 제어하기 어렵다. 원하는 토크를 발생시키기 위해 SRM 드라이브는 스위치-온각, 스위치-오프각 그리고 인가 접압에 의해 제어된다. 스위치-온, 오프 각 에의해 원하는 전류와 토크를 제어할수있다. 본 논문은 스위치 온, 오프각을 제어하는 최적제어방식을 제안하였다. 스위치 오프 각은 시뮬레이션과 실험을 통하여 효율을 기준으로 결정하였으며, 스위치 온각은 부하에 의해 결정되었다. 도통각은 토크제어와 속도제어를 위해 GA-신경회로망을 이용하여 제어하였다.

  • PDF

LVQ 신경망을 이용한 EEG 신호 분류 (The EEG classification using LVQ Neural Network)

  • 김재욱;이동한;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.848-850
    • /
    • 2000
  • 본 논문에서는 신경회로망을 이용하여 On-Line상에서 EEG(Electroencephalogram) 신호를 분류하는 방법을 제안한다. EEG 신호란 인간의 두뇌활동에서 발생하는 전기적 신호로서 고도의 비선형과 시변 특성을 지니고 있어 정량적인 분석이 어려운 신호로 여겨진다. 이를 분석하기 위해 본 논문에서는 입력 벡터들을 서브클래스로 분류하는 경쟁 레이어와 서브클래스를 모아 정해진 클래스를 선택하는 선형 레이어로 이루어진 LVQ (Learning Vector Quantization) 신경망을 구성하고 On-Line 분석결과를 제시한다. 이러한 On-line 분석방법은 EEG 신호를 실시간으로 분석하여 컴퓨터를 인간의 생각만으로 제어될 수 있는 BCI(Brain Computer Interface)의 구현에 사용될 것이다.

  • PDF

ATM 연결 수락 제어를 위한 인공 신경망의 학습패턴 처리기법 (A Training Pattern Processing Processing Method for ATM Connection Admission Control Using the Neural Network)

  • 김용남;권오준;김태석
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.109-113
    • /
    • 2003
  • 기존의 VOB(Virtual Output Buffer) 모델에서 신경회로망의 학습 패턴 처리를 위해 가상 셀 손실율이 도입되었다. VOB 모델은 신경망이 실제 셀 손실율 없이도 연결 수락 경계를 잘 찾을 수 있음을 보여주었다. 그러나 VOB 모델은 셀 손실율을 과다 평가하는 경향이 있어 결과적으로 망 자원의 이용률이 낮은 단점이 있다. 된 논문에서는 이러한 단점을 보완하는 방법으로 연결 수락 경계에서 셀 손실율의 평균에 대한 정보를 충분히 포함하는 셀 손실율 참조 곡선의 개념을 제안하였다 그리고 제안된 셀 손실을 참조 곡선을 이용하여 가상 셀 손실율을 처리하는 방법을 제안하였다. 제안된 학습 패턴 처리 방법은 ATM 트래픽 중에 가장 대표적인 두 가지 호원에 대하여 실험하였다. 실험에 사용된 호원은 LAN 데이터의 트래픽 특성을 가지는 On-Off 트래픽과 비디오 화상 통신의 특성을 가지는 Auto-Regressive 트래픽이다.

  • PDF

센서리스 유도전동기의 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Improved Neural Network-based Self-Tuning Fuzzy PID Controller for Sensorless Vector Controlled Induction Motor Drives)

  • 김상민;한우용;이창구;한후석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1165-1168
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for sensorless vector controlled induction motor drives. MRAS(Model Reference Adaptive System) is used for rotor speed estimation. When induction motor is continuously used long time. its electrical and mechanical parameters will change, which degrade the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. The proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using DS1102 board show the robustness of the proposed controller to parameter variations.

  • PDF

신경회로망을 이용한 납땜 검사 FOV의 최적화 알고리즘 (Optimal algorithm of FOV for solder joint inspection using neural network)

  • 오제휘;차영엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1549-1552
    • /
    • 1997
  • In this paper, a optimal algorithm that can produce the FOV is proposed in terms of using the Kohonen's Self-Organizing Map(KSOM). A FOV, that stands for "Field Of View", means maximum area where a camera could be wholly seen and influences the total time of inspection of vision system. Therefore, we draw algorithm with a KSOM which aims to map an input space of N-dimensions into a one-or two-dimensional lattice of output layer neurons in order to optimize the number and location of FOV, instead of former sequentila method. Then, we show demonstratin through computer simulation using the real PCB data. PCB data.

  • PDF