• Title/Summary/Keyword: 신경회로망 제어

Search Result 616, Processing Time 0.032 seconds

Control of an experimental magnetic levitation system using feedforward neural network controller (앞먹임 신경회로망 제어기를 이용한 자기부상 실험시스템의 제어)

  • 장태정;이재환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1557-1560
    • /
    • 1997
  • In this paper, we have built an experimental magnetic levitation system for a possible use of control education. We have give a mathermatical model of the nonlinear system and have shown the stability region of the linearized system when it is controlled by a PD controller. We also proposed a neural network control system which uses a neural network as a feedforward controller thgether with a conventional feedback PF controller. We have generated a desired output trajectory, which was designed for the benefit of the generalization of the neural network controller, and trained the desired output trajectory, which was desigend for the benefit of the generalization of the neural netowrk controller, and trained a neural network controller with the data of the actual input and the output of the system obtained by applying the desired output trajectroy. A good tracking performance was observed for both the desired trajectiories used and not used for the neural network training.

  • PDF

Digital current control for BLDC motor using variable structure controller and artificial neural network (가변구조제어기와 인공 신경회로망에 의한 BLDC모터의 디지털 전류제어)

  • 박영배;김대준;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.504-507
    • /
    • 1997
  • It is well known that Variable Structure Controller(VSC) is robust to parameters variation and disturbance but its performance depends on the design parameters such as switching gain and slope of sliding surface. This paper proposes a more robust VSC that is composed of local VSC's. Each local VSC considers the local system dynamics with narrow parameter variation and disturbance. First we optimize the local VSC's by use of Evolution Strategy, and next we use Artificial Neural Network to generalize the local VSC's and construct the overall VSC in order to cover the whole range of parameter variation and disturbance. Simulation on BLDC motor current control shows that the proposed VSC is superior to the conventional VSC.

  • PDF

Position Tracking Control of an Autonomous Helicopter by an LQR with Neural Network Compensation (자율 주행 헬리콥터의 위치 추종 제어를 위한 LQR 제어 및 신경회로망 보상 방식)

  • ;Om, Il-Yong;Suk, Jin-Young;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.930-935
    • /
    • 2005
  • In this paper, position tracking control of an autonomous helicopter is presented. Combining an LQR method and a proportional control forms a simple PD control. Since LQR control gains are set for the velocity control of the helicopter, a position tracking error occurs. To minimize a position tracking error, neural network is introduced. Specially, in the frame of the reference compensation technique for teaming neural network compensator, a position tracking error of an autonomous helicopter can be compensated by neural network installed in the remotely located ground station. Considering time delay between an auto-helicopter and the ground station, simulation studies have been conducted. Simulation results show that the LQR with neural network performs better than that of LQR itself.

Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle (수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어)

  • Seo, Kyoung-Cheol;Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.

System Modeling based on Genetic Algorithms for Image Restoration : Rough-Fuzzy Entropy (영상복원을 위한 유전자기반 시스템 모델링 : 러프-퍼지엔트로피)

  • 박인규;황상문;진달복
    • Science of Emotion and Sensibility
    • /
    • v.1 no.2
    • /
    • pp.93-103
    • /
    • 1998
  • 효율적이고 체계적인 퍼지제어를 위해 조작자의 제어동작을 모델링하거나 공정을 모델링하는 기법이 필요하고, 또한 퍼지 추론시에 조건부의 기여도(contribution factor)의 결정과 동작부의 제어량의 결정이 추론의 결과에 중요하다. 본 논문에서는 추론시 조건부의 기여도와 동작부의 세어량이 퍼지 엔트로피의 개념하에서 수행되는 적응 퍼지 추론시스템을 제시한다. 제시된 시스템은 전방향 신경회로망의 토대위에서 구현되며 주건부의 기여도가 퍼지 엔트로피에 의하여 구해지고, 동작부의 제어량은 확장된 퍼지 엔트로피에 의하여 구해진다. 이를 위한 학습 알고리즘으로는 역전파 알고리즘을 이용하여 조건부의 파라미터의 동정을 하고 동작부 파라미터의 동정에는 국부해에 보다 강인한 유전자 알고리즘을 이용하다. 이러한 모델링 기법을 임펄스 잡음과 가우시안 잡음이 첨가된 영상에 적용하여 본 결과, 영상복원시에 발생되는 여러 가지의 경우에 대한 적응성이 보다 양호하게 유지되었고, 전체영상의 20%의 데이터만으로도 객관적 화질에 있어서 기존의 추론 방법에 비해 향상을 보였다.

  • PDF

Precision Position Control of Piezoactuator Using Inverse Hysteresis Model and Neuro-PID Controller (역히스테리시스 모델과 PID-신경회로망 제어기를 이용한 압전구동기의 정밀 위치제어)

  • 김정용;이병룡;양순용;안경관
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.22-29
    • /
    • 2003
  • A piezoelectric actuator yields hysteresis effect due to its composed ferroelectric. Hysteresis nonlinearty is neglected when a piezoelectric actuator moves with short stroke. However when it moves with long stroke and high frequency, the hysteresis nonlinearty can not be neglected. The hysteresis nonlinearty of piezoelectric actuator degrades the control performance in precision position control. In this paper, in order to improve the control performance of piezoelectric actuator, an inverse modeling scheme is proposed to compensate the hysteresis nonlinearty. And feedforward - feedback controller is proposed to give a good tracking performance. The Feedforward controller is an inverse hysteresis model, base on neural network and the feedback control is implemented with PID control. To show the feasibility of the proposed controller and hysteresis modeling, some experiments have been carried out. It is concluded that the proposed control scheme gives good tracking performance.

A Study on the Stabilization Control of an Inverted Pendulum Using Learning Control (학습제어를 이용한 도립진자의 안정화제어에 관한 연구)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.168-175
    • /
    • 1999
  • Unlike a general inverted pendulum system which is moved on the cart the proposed inverted pendulum system in this paper has an inverted pendulum which is moved on the two-degree-of-freedom parallelogram link. The dynamic equation of the pendulum system activated by the DD(Direct Drive)motor includes many nonlinear terms and has the high degree of freedoms. The problem is followed hat the exact mathmatical equations can not be analized by a general linear theory However the neural network trained by a simple learning method can control the dynamic system with hard nonlinearities. Learning procedure is the backpropagation algorithm with super-visory signal. The plant inputs obtained by the designed neural network in this paper can stabilize the pendu-lem and get the servo control. Experiment results have proce the effectiveness of the designed neural network controller.

  • PDF

Implementation and Control of Crack Tracking Robot Using Force Control : Crack Detection by Laser and Camera Sensor Using Neural Network (힘제어 기반의 틈새 추종 로봇의 제작 및 제어에 관한 연구 : Part Ⅰ. 신경회로망을 이용한 레이저와 카메라에 의한 틈새 검출 및 로봇 제작)

  • Cho Hyun Taek;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.290-296
    • /
    • 2005
  • This paper presents the implementation of a crack tracking mobile robot. The crack tracking robot is built for tracking cracks on the pavement. To track cracks, crack must be detected by laser and camera sensors. Laser sensor projects laser on the pavement to detect the discontinuity on the surface and the camera captures the image to find the crack position. Then the robot is commanded to follow the crack. To detect crack position correctly, neural network is used to minimize the positional errors of the captured crack position obtained by transformation from 2 dimensional images to 3 dimensional images.

Motion Control of Servo Cylinder Using Neural Network (신경회로망을 이용한 서보 실린더의 운동제어)

  • Hwang, Un-Kyoo;Cho, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.955-960
    • /
    • 2004
  • In this paper, a neural network controller that can be implemented in parallel with a PD controller is suggested for motion control of a hydraulic servo cylinder. By applying a self-excited oscillation method, the system design parameters of open loop transfer function of servo cylinder system are identified. Based on system design parameters, the PD gains are determined for the desired closed loop characteristics. The Neural Network is incorporated with PD control in order to compensate the inherent nonlinearities of hydraulic servo system. As an application example, a motion control using PD-NN has been performed and proved its superior performance by comparing with that of a PD control.

Control of Identifier of Chip Form by Adjusting Feedrate Used Neural Network Algorithm (선삭에서 신경망 알고리즘에 의한 칩 형태의 인식과 제어)

  • Jun, J.U.;Ha, M.K.;Koo, Y.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.108-115
    • /
    • 2000
  • The continuous chip in turning operation deteriorates the precision of workpiece and can cause a hazardous condition to operator. Thus the chip form control becomes a very important task for reliable turning process. Using the difference of energy radiated from the chip, the chip form is identified using the neural network of supervised data. The feed mechanism is adjusted in order to break continuous chip according to the result of the chip form recognition and shows a good approach for precision turning operation.

  • PDF