• Title/Summary/Keyword: 신경회로망 제어

Search Result 616, Processing Time 0.033 seconds

Parallel Type Neural Network for Direct Control Method of Nonlinear System (비선형 시스템의 직접제어방식을 위한 병렬형 신경회로망)

  • 김주웅;정성부;서원호;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.406-409
    • /
    • 2000
  • We propose the modified neural network which are paralleled to control nonlinear systems. The proposed method is a direct control method to use inverse model of the plant. Nonlinear systems are divided into two parts; linear part and nonlinear part, and it is controlled by RLS method and recursive multi-layer neural network with each other. We simulate to verify the performance of the proposed method and are compared with conventional direct neural network control method. The proposed control method is improved the control performance than the conventional method.

  • PDF

Trajectory Control of a Robot Manipulator by TDNN Multilayer Neural Network (TDNN 다층 신경회로망을 사용한 로봇 매니퓰레이터에 대한 궤적 제어)

  • 안덕환;양태규;이상효;유언무
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.5
    • /
    • pp.634-642
    • /
    • 1993
  • In this paper a new trajectory control method is proposed for a robot manipulator using a time delay neural network(TDNN) as a feedforward controller with an algorithm to learn inverse dynamics of the manipulator. The TDNN structure has so favorable characteristics that neurons can extract more dynamic information from both present and past input signals and perform more efficient learning. The TDNN neural network receives two normalized inputs, one of which is the reference trajectory signal and the other of which is the error signals from the PD controller. It is proved that the normalized inputs to the TDNN neural network can enhance the learning efficiency of the neural network. The proposed scheme was investigated for the planar robot manipulator with two joints by computer simulation.

  • PDF

Wavelet Network for Stable Direct Adaptive Control of Nonlinear Systems (비선형 시스템의 안정한 직접 적응 제어를 위한 웨이브렛 신경회로망)

  • Seo, Seung-Jin;Seo, Jae-Yong;Won, Kyoung-Jae;Yon, Jung-Heum;Jeon, Hong-Tae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.10
    • /
    • pp.51-57
    • /
    • 1999
  • In this paper, we deal with the problem of controlling an unknown nonlinear dynamical system, using wavelet network. Accurate control of the nonlinear systems depends critically on the accuracy and efficiency of the function approximator used to approximate the function. Thus, we use wavelet network which shows high capability of approximating the functions and includes the free-selection of basis functions for the control of the nonlinear system. We find the dilation and translation that are wavelet network parameters by analyzing the time-frequency characteristics of the controller's input to construct an initial adaptive wavelet network controller. Then, weights is adjusted by the adaptive law based on the Lyapunov stability theory. We apply this direct adaptive wavelet network controller to control the inverted pendulum system which is an nonlinear system.

  • PDF

A Study on Development ATCS of Transfer Crane using Neural Network Predictive Control (신경회로망 예측제어에 의한 Transfer Crane의 ATCS개발에 관한 연구)

  • Sohn, Dong-Seop;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.5
    • /
    • pp.537-542
    • /
    • 2002
  • Recently, an automatic crane control system is required with high speed and rapid transportation. Therefore, when container is transferred from th intial coordinate to the finial coordinate, the container paths should be built in terms of the least time and no swing. So in this paper, we calculated the anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the neural network predictive PID (NNPPID) controller to control the precise navigation. The proposed predictive control system is composed of the neural network predictor, PID controller, neural network self-tuner which yields parameters of PID. Analyzed crane system through simulation, and proved excellency of control performance than other conventional controllers.

Development of Neural Network Controller for Maximum Power Point Tracking of PV System (PV 시스템의 최대전력점 추적을 위한 신경회로망 제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • This paper presents an Neural Network(NN) controller for Maximum Power Point Tracking (MPPT) of PV supplied DC motor. A variation of solar irradiation is most important factor in the MPPT of PV system. That is nonlinear, aperiodic and complicated. NN was widely used due to easily solving a complex math problem. Proposed photovoltaic system consists of NN, DC-DC converter, DC motor and load(cf, pump). NN algorithm apply to DC-DC converter through an Adaptive control of Neural Network, calculates Converter-Chopping ratio using an Adaptive control of NN. The results of an Adaptive control of NN compared with the results of Converter-Chopping ratio which are calculated mathematical modeling and evaluate the proposed algorithm. The experimental data show that an adequacy of the algorithm was established through the compared data.

Comparison of Different Schemes for Speed Sensorless Control of Induction Motor Drives by Neural Network (신경회로망을 이용한 유도전동기의 속도 센서리스 방식에 대한 비교)

  • 국윤상;김윤호;최원범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • 일반적으로 시스템 인식과 제어에 이용하는 다층 신경회로망은 기존의 역전파 알고리즘을 이용한다. 그러나 결선강도에 대한 오차의 기울기를 구하는 방법이기 때문에 국부적 최소점에 빠지기 쉽고, 수렴속도가 매우 늦으며 초기 결선강도 값들이나 학습계수에 민감하게 반응한다. 이와 같은 단점을 개선하기 위하여 확장된 칼만 필터링 기법을 역전파 알고리즘에 결합하였으나 계산상의 복잡성 때문에 망의 크기가 증가하면 실제 적용할 수 없다. 최근 신경회로망을 선형과 비선형 구간으로 구분하고 칼만 필터링 기법을 도입하여 수렴속도를 빠르게 하고 초기 결선강도 값에 크게 영향을 받지 않도록 개선하였으나, 여전히 은닉층의 선형 오차값을 역전파 알고리즘에 의해서 계산하기 때문에 학습계수에 민감하다는 단점이 있다. 본 논문에서는 위에서 언급한 기존의 신경회로망 알고리즘의 문제점을 개선하기 위하여 은닉층의 목표값을 최적기법에 의하여 직접계산하고 각각의 결선강도 값은 반복최소 자승법으로 온라인 학습하는 알고리즘을 제안하고 이들 신경회로망 알고리즘과 비교하고자 한다. 여러 가지 시뮬레이션과 실험을 통하여 제안된 방법이 초기 결선강도에 크게 영향을 받지 않으며, 기존의 학습계수 선정에 따른 문제점을 해결함으로써 신경회로망 모델에 기초한 실시간 제어기 설계에 응용할 수 있도록 하였다. 또한, 유도전동기의 속도추정과 제어에 적용하여 좋은 결과를 보였다.

  • PDF

Indirect Neuro-Control of Nonlinear Multivariable Servomechanisms (비선형 다변수 시스템의 간접신경망제어)

  • Jang, Jun-Oh;Lee, Pyeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.14-22
    • /
    • 2001
  • This paper presents identification and control designs using neural networks for a class of multivariable nonlinear servomechanisms. A proposed neuro-controller is a combination of linear controllers and a neural network, and is trained by indirect neuro-control scheme. The proposed neuro-controller is implemented and tested on an IBM PC-based two 2 bar systems holding an object, and is applicable to many de-motor-driven precision multivariable nonlinear servomechanisms. The ideas, algorithm, and experimental results arc described. Moreover, experimental results are shown to be superior to those of conventional control.

  • PDF

Adaptive Output Feedback Control of Unmanned Helicopter Using Neural Networks (신경회로망을 이용한 무인헬리콥터의 적응출력피드백제어)

  • Park, Bum-Jin;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.990-998
    • /
    • 2007
  • Adaptive output feedback control technique using Neural Networks(NN) is proposed for uncertain nonlinear Multi-Input Multi-Output(MIMO) systems. Modified Dynamic Inversion Model(MDIM) is introduced to decouple uncertain nonlinearities from inversion-based control input. MDIM consists of approximated dynamic inversion model and inversion model error. One NN is applied to compensate the MDIM of the system. The output of the NN augments the tracking controller which is based upon a filtered error approximation with online weight adaptation laws which are derived from Lyapunov's direct method to guarantee tracking performance and ultimate boundedness. Several numerical results are illustrated in the simulation of Van der Pol system and unmanned helicopter with model uncertainties.

Study on Adaptive Higher Harmonic Control Using Neural Networks (신경회로망을 이용한 적응 고차조화제어 기법 연구)

  • Park, Bum-Jin;Park, Hyun-Jun;Hong, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.39-46
    • /
    • 2005
  • In this paper, adaptive higher harmonic control technique using Neural Networks (NN) is proposed. First, linear transfer function is estimated to relate the input harmonics and output harmonics, then NN which has the universal function approximation property is applied to expand application range of the transfer function. Optimal control gain matrix computed from the transfer function is used to train NN weights. Online weight adaptation laws are derived from Lyapunov's direct method to guarantee internal stability. Results of the simulation of 6-input 2-output nonlinear system show that adaptive HHC is applicable to the system with uncertain transfer function.

Optimal Control Design Method Using the Neural Network (신경회로망을 이용한 최적제어 설계방식)

  • 권성훈;이인재;정지원;김한웅;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.295-299
    • /
    • 1998
  • 최근 여러 분야에서 필요성이 증대되고 있는 최적제어, 최적설계 및 최적추정에 대하여 신경회로망을 이용하는 방식을 제안하였다. 제안한 방식은 3점 탐색 알고리즘을 사용하여 성능지표의 최소값을 찾아내어 이 때의 가중치를 신경회로망의 가중치 초기값으로 설정하여 다시 학습시킴으로서 보다 효율적인 학습결과를 얻을 수 있었다. 제안한 방식을 최적제어에 대하여 시뮬레이션하여 유용성을 확인하였다.

  • PDF