• 제목/요약/키워드: 신경망 회로

검색결과 1,015건 처리시간 0.027초

잔여 밀집 및 채널 집중 기법을 갖는 재귀적 경량 네트워크 기반의 단일 이미지 초해상도 기법 (Single Image Super Resolution Based on Residual Dense Channel Attention Block-RecursiveSRNet)

  • 우희조;심지우;김응태
    • 방송공학회논문지
    • /
    • 제26권4호
    • /
    • pp.429-440
    • /
    • 2021
  • 최근 심층 합성 곱 신경망 학습의 발전에 따라 단일 이미지 초해상도에 적용되는 심층 학습 기법들은 좋은 성과를 보여주고 있다. 현존하는 딥러닝 기반 초해상도 기법들 중 하나로 잔여 밀집 블록을 이용하여 초기의 특징 정보를 마지막 계층에 전달하여 이후의 계층들이 이전의 계층들의 입력정보를 사용하여 복원하는 RDN(Residual Dense Network)이 있다. 하지만 계층적인 모든 특징을 연결하여 학습하고 다수의 잔여 밀집 블록을 쌓게 되면 좋은 성능에도 불구하고 많은 파라미터의 수와 연산량을 가지게 되어 느린 처리 속도와 네트워크를 학습하는데 많은 시간이 소요되고 모바일 시스템에 적용이 어렵다는 단점을 가지고 있다. 본 논문에서는 이전의 정보를 다시 사용하는 연속 메모리 구조인 잔여 밀집 구조와 이미지의 특징맵에 따라 중요도를 결정해주는 채널 집중 기법을 이용한 잔여밀집 채널 집중 블록을 재귀적인 방식으로 사용하여 추가적인 파라미터 없이 네트워크의 깊이를 늘려 큰 수용 영역을 얻으며 동시에 간결한 모델을 유지할 수 있는 방식을 제안한다. 실험 결과 제안하는 네트워크는 RDN과 비교 하였을 때 4배 확대 배율에서 평균적으로 PSNR 0.205dB만큼 낮지만 약 1.8배 더 빠른 처리속도, 약 10배 더 적은 파라미터의 수와 약 1.74배 더 적은 연산량을 갖는 것을 실험을 통해 확인하였다.

A Comparative study on smoothing techniques for performance improvement of LSTM learning model

  • Tae-Jin, Park;Gab-Sig, Sim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권1호
    • /
    • pp.17-26
    • /
    • 2023
  • 본 연구논문에서는 LSTM 기반의 학습 모델 적용과 그 효용성을 높일 수 있도록 몇 가지 평활 기법을 비교, 적용하고자 한다. 적용된 평활 기법은 Savitky-Golay, 지수 평활법, 가중치 이동 평균 등이다. 본 연구를 통해 비트코인 데이터에 LSTM모델 적용 시 보여준 결과 값보다 전처리 과정에서 적용된 Savitky-Golay 필터가 적용된 LSTM 알고리즘이 예측 성능에 유의미한 좋은 결과를 보였다. 예측 성능 결과를 확인하기 위해 비트코인 가격 예측에 따른 복잡 요인을 제거하는데 사용된 LSTM의 경우와 Savitzky-Golay LSTM 모델에 따른 학습 손실율과 검증 손실율을 비교하고 그 신뢰성을 높일 수 있도록 20회 평균값으로 실험하였다. 그 결과 (3.0556, 0.00005), (1.4659, 0.00002)의 값을 얻을 수 있었다. 결과적으로는 비트코인과 같은 암호화폐가 주식보다 더한 변동성을 가지는 만큼 데이터 전처리 과정에서 평활 기법(Savitzky-Golay)을 적용하여 잡음(Noise)을 제거하였으며, 전처리 후의 데이터는 LSTM 신경망 학습을 통해서 비트코인 예측률을 높이는데 가장 유의미한 결과를 얻을 수 있었다.

무장 선택을 위한 딥러닝 기반의 비행체 식별 기법 연구 (A Study on Deep Learning based Aerial Vehicle Classification for Armament Selection)

  • 차은영;김정창
    • 방송공학회논문지
    • /
    • 제27권6호
    • /
    • pp.936-939
    • /
    • 2022
  • 최근 공중 전투체계 기술들이 발전함에 따라 대공방어 시스템의 발전이 요구되고 있다. 대공 방어 시스템의 운용개념에 있어, 표적에 적합한 무장을 선택하는 것은 제한된 대공 전력을 사용하여 위협체에 대해 효율적으로 대응한다는 측면에서 체계에 요구되는 능력 중 하나이다. 비행 위협체의 식별에 있어 많은 부분이 운용자의 육안 식별에 의존하는데 고속으로 기동하고 원거리에 위치한 비행체를 육안으로 판별하는 것은 많은 한계가 있다. 뿐만 아니라, 현대 전장에서 무인화 및 지능화된 무기체계의 수요가 증가함에 따라 운용자의 육안 식별 대신 체계가 자동으로 비행체를 식별하고 분류하는 기술의 개발이 필수적이다. 영상자료를 수집해 딥러닝 기반의 모델을 이용하여 무기체계를 식별한 사례로는 전차와 함정 등이 있지만 비행체의 식별에 대한 연구는 아직 많이 부족한 상황이다. 따라서 본 논문에서는 합성곱 신경망 모델을 이용하여 전투기, 헬기, 드론을 분류하는 모델을 제시하고 제시하는 모델의 성능을 분석한다. 본 논문에서 제시하는 모델은 시험세트에 대해 95% 이상의 정확도를 보이고, precision 0.9579, recall 0.9558, F1-socre 0.9568의 값을 나타내는 것을 확인할 수 있다.

3.0T 자기공명영상장치를 이용한 사람의 간지럼자극과 감각중추 자극의 활성화 차이 (Difference of fMRI between the Tickling and Sensory Stimulation Using 3.0 Tesla MRI)

  • 강현수;임기선;한동균
    • 한국콘텐츠학회논문지
    • /
    • 제10권2호
    • /
    • pp.286-294
    • /
    • 2010
  • 기능적 자기공명영상법(fMRI)을 이용하여 일반 감각 자극과 다른 간지럼 자극 과제를 수행 할 때 대뇌 감각중추 신경 연결망을 규명하고, 간지럼이 웃음의 기전과 어떤 차이가 있는지를 알아보고자 하였다. 건강한 성인 남녀 16명(평균 : 28.9세)을 대상으로 두 종류의 감각 자극 과제 수행동안 3.0T 자기공명영상장치를 사용하여 기능적 자기공명영상을 얻었다. 감각 자극은 피험자마다 역균형화하여 제시되었으며, 블록 설계로 자극 제시와 영상 획득이 이루어졌다. 획득된 영상 데이터는 SPM 99 분석하였으며, 개별 분석과 그룹 분석을 실시하였다. 개별 분석 결과 두 과제 모두 체감각 영역의 활성화가 관찰되었고, 간지럼 자극 조건은 감각자극 조건에 비해 베리니케 영역(BA40)에서 더 많은 활성화를 보였다. 또한, 그룹 분석결과 일반 감각 조건에서는 양쪽 체감각 피질 영역(BA 1,2,3)이 활성화되었으며, 간지럼 조건에서는 양쪽 체감각 피질 뿐만 아니라 시상, 대상회, 대뇌섬엽 영역에서 커다란 활성화를 보였다. 간지럼 자극에서 감각자극을 뺀 결과에서는 우측 대상회와 좌측 MFG 영역 및 좌측섬엽 에서 유의미한 활성화를 보였다. 촉각을 통한 간지럼자극을 인지하는 대뇌영역에 대해 검증하였고, 간지럼과 같은 가장 원초적인 자극이 다양한 사회적 활동에서 중요한 기능을 담당하는 웃음과 밀접한 관련이 있음을 알 수 있었다.

유리화 비정형 탄소(vitreous carbon)를 이용하여 제작한 전계방출 소자의 균일성 증진방법

  • 안상혁;이광렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.53-53
    • /
    • 1999
  • 전계방출을 이용한 평판 표시장치는 CRT가 가진 장점을 모두 갖는 동시에 얇고 가벼우며 낮은 전력소모로 완벽한 색을 구현할 수 있는 차세대 표시장치로서 이에 대한 여국가 활발히 이루어지고 있다. 여기에 사용되는 음극물질로서 실리콘이나 몰리 등을 팁모양으로 제작하여 사용해 왔다. 하지만 잔류가스에 의한 역스퍼터링이나 화학적 반응에 의해서 전계방출 성능이 점차 저하되는 등의 해결해야할 많은 문제가 있다. 이러한 문제들을 해결하기 위하여 탄소계 재료로서 다이아몬드, 다이아몬드상 카본 등을 이용하려는 노력이 진행되어 왔다. 이중 유리화 비정형 탄소는 다량의 결함을 가지고 있는 유리질의 고상 탄소 재로로서, 전기전도도가 우수하면서 outgassing이 적고 기계적 강도가 뛰어나며 고온에서도 화학적으로 안정하여 전계방출 소자의 음극재료로서 알맞은 것으로 생각된다. 유리화 비정형 탄소가루를 전기영동법으로 기판에 코팅하여 전계방출 소자를 제작하였다. 전기영동 용액으로 이소프로필알코올에 질산마그네슘과 소량의 증류수, 유리화 비정형 탄소분말을 섞어주었고 기판으로는 몰리(Mo)가 증착된 유리를 사용하였다. 균일한 증착을 위해서 증착후 역전압을 걸어 주는 방법과 증착 후 플라즈마 처리를 하는 등의 여러 가지 방법을 사용했다. 전계방출 전류는 1$\times$10-7Torr이사에서 측정하였다. 1회 제작된 용액으로 반복해서 증착한 횟수에 따라 표면의 거치기, 입자의 분포, 전계방출 측정 결과 등의 차이가 관찰되었다. 발광이미지는 전압에 따라 변화하였고, 균일한 발광을 관찰하기 위해서 오랜 시간동안 aging 과정을 거쳐야 했다. 그리고 구 모양의 양극을 사용해서 위치를 변화시키며 시동 전기장을 관찰하여 위치에 따른 전계방출의 차이를 조사하여 발광의 균일성을 알 수 있었다.on microscopy로 분석하였으며 구조 분석은 X-선 회절분석, X-ray photoelectron spectroscopy 그리고Auger electron spectroscope로 하였다. 증착된 산화바나듐 박막의 전기화학적 특성을 분석하기 위하여 리튬 메탈을 anode로 하고 EC:DMC=1:1, 1M LiPF6 액체 전해질을 사용한 Half-Cell를 구성하여 200회 이상의 정전류 충 방전 시험을 행하였다. Half-Cell test 결과 박막의 결정성과 표면상태에 따라 매우 다른 전지 특성을 나타내었다.도상승율을 갖는 경우가 다른 베이킹 시나리오 모델에 비해 효과적이라 생각되며 초대 필요 공급열량은 200kW 정도로 산출되었다. 실질적인 수치를 얻기 위해 보다 고차원 모델로의 해석이 필요하리라 생각된다. 끝으로 장기적인 관점에서 KSTAR 장치의 베이킹 계획도 살펴본다.습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.pective" to workflow architectural discussions. The vocabulary suggested

  • PDF

Xception 모델링을 이용한 흉부 X선 영상 폐렴(pneumonia) 진단 시 배치 사이즈별 비교 분석 (Comparative Analysis by Batch Size when Diagnosing Pneumonia on Chest X-Ray Image using Xception Modeling)

  • 김지율;예수영
    • 한국방사선학회논문지
    • /
    • 제15권4호
    • /
    • pp.547-554
    • /
    • 2021
  • 흉부 X선 영상의 폐렴을 신속하고 정확하게 진단하기 위하여 동일한 Xception 딥러닝 모델에 배치 사이즈를 4, 8, 16, 32로 다르게 적용하여 각각 3회의 모델링을 실시하였다. 그리고 성능평가 및 metric 평가에 대한 결과값을 3회 평균값으로 산출하여 배치 사이즈별 흉부 X선 영상의 폐렴 특징 추출과 분류의 정확도 및 신속성을 비교 평가하였다. 딥러닝 모델링의 성능평가 결과 배치 사이즈 32를 적용한 모델링의 경우 정확도, 손실함수 값, 평균제곱오차, 1 epoch 당 학습 소요 시간의 결과가 가장 우수한 결과를 나타내었다. 그리고 Test Metric의 정확도 평가는 배치 사이즈 8을 적용한 모델링이 가장 우수한 결과를 나타내었으며, 정밀도 평가는 모든 배치 사이즈에서 우수한 결과를 나타내었다. 재현율 평가는 배치 사이즈 16을 적용한 모델링이 가장 우수한 결과를 나타내었으며, F1-score는 배치 사이즈 16을 적용한 모델링이 가장 우수한 결과를 나타내었다. 그리고 AUC score 평가는 모든 배치 사이즈의 결과가 동일하였다. 이러한 결과를 바탕으로 배치 사이즈 32를 적용한 딥러닝 모델링이 높은 정확도, 안정적인 인공신경망 학습 및 우수한 신속성의 결과를 나타내었다. 향후 딥러닝을 이용한 흉부 X선 영상의 폐렴에 대한 특징 추출 및 분류에 관하여 자동진단 연구 시 배치 사이즈를 32로 적용한다면 정확하면서도 신속한 병변 검출이 가능할 것이라고 사료된다.

광역 스펙트로그램과 심층신경망에 기반한 중첩된 소리의 인식과 영향 분석 (Recognition of Overlapped Sound and Influence Analysis Based on Wideband Spectrogram and Deep Neural Networks)

  • 김영언;박구만
    • 방송공학회논문지
    • /
    • 제23권3호
    • /
    • pp.421-430
    • /
    • 2018
  • 많은 음성인식 시스템들은 MFCC와 HMM등의 분류 기법을 사용하여 사람의 음성을 인식한다. 그러나 이러한 음성인식 시스템은 단일 음성신호를 인식하는 것을 목적으로 설계되어, 인간과 기계사이의 일대일 음성 인식에는 적합하나, 애완동물 소리와 실내 소리같은 음성보다 다양하고 넓은 주파수의 소리 군으로 중첩된 음향 속에서 설정된 소리를 인식하기에는 제한이 있다. 중첩된 소리들의 주파수는 사람의 목소리보다 높은 최대 20 kHz까지 넓은 주파수 범위로 구성된다. 본 논문에서는 광역 사운드 스펙트로그램과 DNN에 기반한 케라스 시?셜 모델 기법을 활용하여 인지 주파수 범위를 넓게 확대하는 새로운 인식방법을 제안한다. 광역 사운드 스펙트로그램이 본 논문에서 설계된 특징 추출 및 분류 시스템과 같이 넓은 주파수 범위의 다양한 소리를 분석하고 실험하도록 채택되었다. 소리 인식률을 개선하기 위하여, 케라스 시?셜 모델이 사운드 스펙트로그램에 의하여 생성되어 추출된 특징을 사용하여 패턴인식을 수행하기 위한 방법으로 채용되었다. 제안된 특징 추출 및 분류 시스템이 광역 사운드 스펙트로그램과 케라스 시?셜 모델을 채용하여 애완동물 소리와 실내 소리같은 다양한 주파수들로 구성되어 중첩된 음향 속에서 설정된 소리를 우수하게 분류하는 것을 확인하였다. 그리고 중첩된 소리의 크기에 비례하여 인식에 미치는 특성과 영향을 단계별로 비교 분석하였다.

딥러닝과 통계 모델을 이용한 T-커머스 매출 예측 (T-Commerce Sale Prediction Using Deep Learning and Statistical Model)

  • 김인중;나기현;양소희;장재민;김윤종;신원영;김덕중
    • 정보과학회 논문지
    • /
    • 제44권8호
    • /
    • pp.803-812
    • /
    • 2017
  • T-커머스는 양방향 디지털 TV를 기반으로 양방향 데이터방송 기술을 활용하여 상거래를 하는 기술융합형 서비스이다. 채널 번호와 판매상품이 제한된 환경에서 T-커머스의 매출을 극대화 하기 위해서는 각 제품의 시간대별 경쟁력을 고려하여 매출이 최대화 되도록 프로그램을 편성해야 한다. 이를 위해, 본 논문에서는 딥러닝을 이용해 T-커머스에서 각 상품을 각 시간대에 편성하였을 때의 매출을 예측하는 방법을 제안한다. 제안하는 방법은 심층신경망을 이용해 판매 상품과 시간대, 주차, 휴일 여부, 그리고 날씨를 입력 받아 실제 방송으로 편성했을 때 기대되는 매출을 예측한다. 그리고, 통계적 모델과 SVD(Singular Value Decomposition)를 적용하여 판매 데이터의 편중 및 희박성 문제를 완화한다. 실제 T-커머스 운영자인 (주)더블유쇼핑의 판매 기록 데이터에 대하여 실험하였을 때 실제 매출과 예측치의 차이가 0.12의 NMAE(Normalized Mean Absolute Error)를 보여 제안하는 알고리즘이 효과적으로 동작함을 확인하였다. 제안된 시스템은 (주)더블유쇼핑의 T-커머스 시스템 적용되어 방송 편성에 활용되었다.

소셜 복마킹 시스템의 스패머 탐지를 위한 기계학습 기술의 성능 비교 (Comparative Study of Machine learning Techniques for Spammer Detection in Social Bookmarking Systems)

  • 김찬주;황규백
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권5호
    • /
    • pp.345-349
    • /
    • 2009
  • 소결 북마킹(social bookmarking) 시스템은 사용자가 북마크를 저장하고 공유할 수 있는 플랫폼을 제공하는 웹 기반(web-based) 시스템으로 폭소노미(folksonomy)를 이용한 대표적인 웹2.0 서비스이다. 소셜 북마킹 시스템에서의 스패머(spammer)란 자신들의 이익을 위해서 시스템을 고의적으로 악용하는 사람을 말한다. 스패머는 많은 양의 잘못된 정보를 시스템에 포스팅(posting)하기 때문에 전체 소셜 북마킹 시스템의 리소스(resource)를 쓸모없게 만들어 버린다. 따라서, 스패머를 빠른 시간 안에 탐지하고 그들의 접근을 차단하는 것은 시스템의 붕괴를 방지하기 위해 중요하다. 본 논문에서는 사용자가 사용한 태그에 대한 데이터를 추출하여, 사용자가 스패머 인지 아닌지를 예측하는 모델을 기계학습의 다양한 방법을 적용하여 생성한 후 그 성능을 비교해 보았다. 구체적으로, 결정테이블 (decision table, DT), 결정트리(decision tree, ID3), 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier), TAN(tree-augmented $na{\ddot{i}}ve$ Bayes) 분류기, 인공신경망(artificial neural network)의 방법을 비교하였다. 그 결과 AUC(area under the ROC curve)와 모델 생성시간을 고려하였을 때 나이브 베이즈 분류기가 가장 만족할 만한 성능을 보였다. 나이브 베이즈 분류기의 분류 결과가 가장 좋았던 이유는 성능을 비교하는 데 사용된 AUC가 결정트리 계열의 방법(ID3 등)보다 나이브 베이즈 분류기에서 일반적으로 높게 나오는 경향이 있다는 것과, 스패머 탐지 문제가 선형으로 분리 가능한 경우(lineally separable)와 유사할 가능성이 높기 때문으로 여겨진다.

인공지능을 이용한 신규간호사 이직률 예측 (Artificial Intelligence to forecast new nurse turnover rates in hospital)

  • 최주희;박혜경;박지은;이창민;최병관
    • 한국융합학회논문지
    • /
    • 제9권9호
    • /
    • pp.431-440
    • /
    • 2018
  • 본 연구에서는 인공지능 기술 중 구글에서 개발하여 오픈소스로 제공하고 있는 텐서플로우(Tensorflow) 활용하여 신규간호사 이직률을 예측해 보았고, 이를 통해 전략적 인적자원관리 방안을 제시하였다. 부산지역 한 대학병원의 2010년에서 2017년 사이 퇴직한 간호사 데이터 1,018건을 수집하였다. 학습에 사용된 자료는 순서를 임의로 재배열 한 뒤 전체 데이터의 80%를 학습에, 나머지 20%를 테스트에 이용하였다. 활용된 알고리즘은 다중신경망회로(multiple neural network)로서 입력층과 출력층, 3개 층의 은닉층을 가지도록 설계 되었다. 본 연구의 결과 텐서플로우 플랫폼을 활용하여 1년 이내 이직률을 88.7%, 3년 이내 조기 이직률은 79.8%의 정확도로 예측하였고, 대상자들의 퇴직 시 연령은 20대 후반부터 30대에 집중되어 있었다. 가장 높은 빈도를 차지한 이직 사유로는 '결혼, 출산, 육아, 가정 및 개인사정'이었으나, 근무기간 1년 이하 대상자 들의 가장 높은 이직사유는 '업무 부적응 및 대인관계 문제'로 나타났다.