• 제목/요약/키워드: 신경망 알고리즘

검색결과 1,683건 처리시간 0.027초

유전 알고리즘을 이용한 퍼지-신경망 제어기 설계 (Design of Fuzzy-Neural Network controller using Genetic Algorithms)

  • 추연규;김현덕
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1998년도 춘계종합학술대회
    • /
    • pp.321-326
    • /
    • 1998
  • 본 논문에서는 정밀 제어와 온-라인 제어를 위하여 유전 알고리즘을 이용한 퍼지-신경망 제어기를 제안하였다. 제안된 제어기의 설계방법은 다음과 같은 3단계의 동조과정으로 구성한다. 1) 퍼지 제어기의 비퍼지화 연산을 신경망을 이용하여 함수근사화 시킨 후, 퍼지-신경망 제어기를 구성한다. 2) 플랜트에 적합한 퍼지 소속함수의 형태를 얻기 위해 유전 알고리즘을 이용하여 근사화된 퍼지 소속함수를 찾는다. 3) 근사화된 초기 퍼지 소속함수를 퍼지-신경망 제어기에 의해 적응학습으로 최적의 퍼지 소속함수를 얻고, 또한 플랜트의 파라미터 변동이나 외부환경의 변화에 대해 적응할 수 있도록 최적의 퍼지 소속함수를 추정한다. 제안된 제어기의 성능을 평가하기 위하여 DC 서보모터의 속도제어에 적용하였다.

  • PDF

DS/SS 통신에서 BISP 알고리즘을 이용한 탭 가중치 갱신 (Tap-Weight Update Multilayer Neural Network using BISP Algorithm in DS/SS Communication)

  • 석경휴;김문환;임영진;김광준;배철수;나상동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.712-716
    • /
    • 2003
  • 본 논문은 신경망을 이용한 간섭 신호 제어로써 복합 다중 퍼셉트론에서 DS/SS 이동 통신에서의 수신된 신호들을 역전파 학습알고리즘을 이용하여 검출하는 것에 대하여 연구한다. 수신 신호가 일정한 비트율을 갖는 채널에 전송하기 위하여 신경망을 이용한 새로운 탭 가중치 갱신 제어 방법을 제안한다. 적응 횡단선 필터는 심볼간의 채널에 발생하는 상호 심볼간 간섭을 억압하기 위해 LMS 알고리즘 사용한다. 이 알고리즘은 원하는 응답과 실제 출력간의 차인 에러를 이용하여 탭 가중치 조절 메카니즘을 통해 탭 가중치를 갱신함으로서 효과적으로 간섭을 제거하였다. 본 논문은 상호 심볼간 간섭을 효율적으로 억압해온 기존의 LMS 알고리즘에 다계층 퍼셉트론 신경망을 조합한 새로운 BISP 알고리즘을 제안하였으며, 제안된 알고리즘을 통해 탭 가중치 갱신이 보다 효율적으로 이루어짐을 알 수 있다. 시뮬레이션 결과를 통해 제안된 알고리즘의 평균 자승 에러의 수렴 특성이 기존 LMS 알고리즘을 이용한 수렴특성보다 우월하다는 것을 나타내었다.

  • PDF

신경망과 수치 해석 알고리즘의 비교 연구 (Comparative Study on the Neural Networks versus Numerical Analysis Algorithm)

  • 이승창;박승권
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.265-272
    • /
    • 1997
  • 본 논문은 신경망 근사 해석 모델 개발을 궁극적인 목적으로 하는 기초적 연구로서, 기존의 수치해석 알고리즘과의 성능 비교를 통하여 신경망 알고리즘의 특성과 역할을 수치해석의 관점에서 정확히 판단하는데 목적이 있다. 신경망 알고리즘을 변형하여 선형 연립 방정식의 해를 구하는 두가지 방법을 제안하였고, 회귀분석, 보간법과의 비교를 통하여 광범위한 근사자(universal approximator)로서의 역할을 보였다.

  • PDF

FPGA를 이용한 웨어러블 디바이스를 위한 역전파 알고리즘 구현 (Implementation of back propagation algorithm for wearable devices using FPGA)

  • 최현식
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제15권2호
    • /
    • pp.7-16
    • /
    • 2019
  • 신경 회로망을 구현하기 위해 다양한 시도들이 이루어지고 있으며, 하드웨어적인 개선을 위해 전용 칩 개발이 이루어지고 있다. 이러한 신경 회로망을 웨어러블 디바이스에 적용하기 위해서는 소형화와 저전력 동작이 필수적이다. 이러한 관점에서 적합한 구현 방법은 FPGA (field programmable gate array)를 사용한 디지털 회로 설계이다. 이 시스템을 구현하기 위해서는 성능 향상을 위해 신경 회로망의 많은 부분을 차지하는 학습 알고리즘을 FPGA 내에 구현하여야 한다. 본 논문에서는 FPGA를 이용하여 다양한 학습 알고리즘 중 역전파 알고리즘을 구현하였으며, 구현 된 신경 회로망은 OR 게이트 연산을 통해 검증되었다. 또한 이러한 신경 회로망을 활용하여 다양한 사용자의 생체 신호 측정 결과를 분석할 수 있음을 확인하였다.

신경망을 이용한 고신뢰성의 회귀분석 모델 (Regression Model With High Reliability by Using Neural Networks)

  • 조용현
    • 정보처리학회논문지B
    • /
    • 제8B권4호
    • /
    • pp.327-334
    • /
    • 2001
  • 본 논문에서는 기울기하강과 동적터널링이 조합된 학습알고리즘의 다층신경망을 이용한 고신회성의 회귀분석 모델을 제안하였다. 기울기하강은 빠른 수렴속도의 최적화가 가능하도록 하기 위함이고, 동적터널링은 국소최적해를 만났을 때 이를 벗어난 새로운 연결가중치를 설정하여 전역최적해로 수렴되도록 하기 위함이다. 또한 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 주요성분분석 기법의 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 회귀분석 모델의 제약도 동시에 해결하였다. 제안된 기법의 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 역전과 알고리즘의 신경망이나 주요성분분석에 의한 차원을 감소시키지 않은 학습패턴을 이용한 신경망보다 각각 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 또한 학습패턴의 영평균 정규화로 회귀용 신경망의 성능을 더욱 더 개선하였다.

  • PDF

MCT와 신경망을 이용한 얼굴 오검출 감소 알고리즘 개발 (Development of Reduction Algorithm for Face Detection Error Using MCT and Neural Network)

  • 라승탁;이승호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.700-703
    • /
    • 2016
  • OpenCV(Open Computer Vision)에서 제공하는 얼굴 검출 알고리즘은 Haar-like feature와 Cascade 방식을 이용하여 얼굴의 패턴을 찾아내 얼굴을 검출한다. 그러나 우연히 얼굴이 아닌 곳이 얼굴과 유사한 패턴일 경우, 얼굴로 인식하는 오류를 범하게 된다. 따라서 본 논문은 MCT(Modified Census Transform)와 신경망을 이용하여 잘못된 얼굴 검출 영역을 감소시키는 알고리즘을 제안한다. MCT는 다양한 조명 조건에서도 강인한 얼굴 영상의 지역적 구조 특징을 추출하기 위하여 사용되고, 신경망 알고리즘은 Haar-Cascade 알고리즘의 얼굴 검출 방법으로 검출된 영역이 실제로 얼굴인지 아닌지를 판단하기 위하여 사용된다. 실험에서 사용된 6개의 데이터들은 인터넷에서 수집한 것으로서, Haar-Cascade 알고리즘의 얼굴 검출 방법으로 얼굴을 검출하였을 때 오검출된 영역이 1개 이상 존재한다. 본 논문에서 제안한 알고리즘으로 실험한 결과, Haar-Cascade 알고리즘의 얼굴 검출 방법에 비하여 오검출된 영역이 감소된 것을 확인할 수 있었다.

유전자 알고리즘을 이용한 비선형 시스템의 퍼지-신경 회로망 모델링 (Fuzzy-Neural Network Modeling of Nonlinear Systems using Genetic Algorithms)

  • 이승형;최용준;김주웅;김한웅;김경수;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1998년도 추계종합학술대회
    • /
    • pp.202-207
    • /
    • 1998
  • 본 논문에서는 유전자 알고리즘을 이용하여 불확실한 비선형 시스템의 퍼지-신경 회로망 모델링을 제안하였다. 제안한 퍼지-신경 회로망 모델링을 위한 학습 알고리즘은 다음과 같은 세 단계로 나누어 진행한다. 첫 번째 단계에서는 퍼지 모델의 소속 함수의 중심간과 표준편차를 구하여 초기 퍼지소속 함수를 결정한다. 두 번째 단계에서는 새로운 알고리즘을 통하여 언어적 퍼지 규칙을 만든다. 마지막 세 번째 단계에서는 유전자 알고리즘을 이용하여 중심값과 표준편차를 최적화함으로써 퍼지 모델의 소속 함수를 조절한다. 제안된 유전자 알고리즘의 장점은 흔히 신경 회로망에서 널리 쓰이는 역전파 알고리즘이 갖는 지역 최소점에 빠지는 현상이 없다는 것이다. 제안한 알고리즘의 유용성을 확인하기 위하여 일반적으로 가장 많이 쓰이는 비선형 시스템에 대하여 시뮬레이션 하여 확인하였다.

  • PDF

신경망필터를 이용한 음질향상 (Speech Enhancement using the Neural Network Filter)

  • 김종우;공성곤
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.102-105
    • /
    • 2000
  • 본 논문에서는 잡음환경에서의 음성신호복원(Speech Enhancement) 시스템 구현을 목적으로 한다 이를 위한 적응필터로서 LMS(Least Mean Square)알고리즘 FIR필터를 제안한다. 또 정밀 필터로서 신경망 필터를 제안한다. 잡음환경에서의 음성신호 복원 시스템은 잡음에 의해 왜곡된 음성신호에서 잡음성분만을 제거함으로써 음성신호를 복원하는 시스템이다. 일반적으로 잡음은 시변특성과, 비선형적인 전달특성을 갖는다. 그러므로 파라미터가 고정된 필터로는 제어하기가 힘들다. 이러한 이유로 본 논문에서는 LMS알고리즘 적응필터를 적용한다. 신경망 필터는 오차 역전파 학습 알고리즘에 의해 오차를 최소화하는 방향으로 필터의 파라미터를 수정한다. 제안한 필터로 잡음환경에서의 음성신호복원 시스템을 구성하고, 실험을 통해 필터의 성능을 확인한다.

  • PDF

모듈화 된 신경 회로망을 이용한 음성의 Narrowband에서 Wideband로의 변환 (Narrowband to Wideband Conversion of Speech using Modularized Neural Network)

  • 우동헌;고참한;강현민;김유신;김형순
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2001년도 추계학술발표대회 논문집 제20권 2호
    • /
    • pp.21-24
    • /
    • 2001
  • 본 논문은 신경 회로망을 이용하여, 전화망 대역의 음성, 즉, narrowband 음성에서 wideband 음성을 복원하고자 했다. BP 알고리즘을 사용하는 기존의 신경 회로망의 경우에는 음성과 같이 복잡하고 크기가 큰 훈련데이터에 대해서는 훈련이 제대로 되지 않는 단점이 있다. 그러므로 븐 논문에서는 이를 해결하기 위해 입력으로 들어온 LPC 켑스트럼 벡터를 k-means 알고리즘을 이용하여 미리 정한 개수의 cluster로 나눈 다음, 각각의 cluster에 대해 독립적인 신경 회로망을 적용했다 이로 인해 각각의 신경 회로망은 제한되고 서로 상관관계가 많은 음성들만 훈련하면 되므로, 기존의 신경 회로망에서 생기는 훈련의 정체를 개선할 수 있었다. 또 clustering 과정에서 생기는 오류를 보완하기 위해 후보신경 로망들의 출력에 fuzzy 개념을 적용해서 최종 출력을 내도록 했다 실험 결과에서, 제안한 알고리즘은 기존의 codebook mapping 알고리즘보다 스펙트럼 거리척도에 의한 비교 및 주관적인 음질 평가 양쪽에서 개선된 성능을 보였다.

  • PDF

소뇌모델 선형조합 신경망의 구조 및 학습기능 연구(II) -학습 시뮬레이션 및 응용- (On Learning and Structure of Cerebellum Model Linear Associator Network(II) -Learing Simulation & Engineering Application-)

  • 황헌;백풍기
    • Journal of Biosystems Engineering
    • /
    • 제15권3호
    • /
    • pp.199-206
    • /
    • 1990
  • 연구 I에서 수행한 소뇌모델 선형조합 신경망(CMLAN)의 분석 결과와 제안된 능률적 학습 알고리즘들에 의거하여 이차원 비선형 함수치의 출력 모의시험과 팔의 형태에 따라 두개의 목적치를 갖는 2 자유도 머니퓨레이터의 동작지령 산출 모의시험을 행하였다. 특히 2 자유도 머니퓨레이터의 경우, 작업공간에 적절한 입력네트의 변수를 선정하고 하나의 입력공간을 공유하는 두개의 세부 소뇌모델 선형조합 신경망을 서로 연결하는 구조로써 팔의 형태와 목적 지점에 따라 네트를 선정하는 구조를 갖도록 하였다. 제안한 학습 알고리즘의 성능 및 CMLAN의 학습에 따른 효과를 학습이득에 따라 컴퓨터로 모의시험하였으며 그 결과를 분석하였다. 잘 알려진 신경망인 BACK-PROPAGATION 다층(Multi-Layer) 신경망과 함수연결 신경망(Functional Link Net)을 이용한 모의시험 결과를 비교 분석하였다. CMLAN의 학습 능률성은 학습에 소요되는 컴퓨터의 cpu시간과 학습 중의시스템의 최대 편차와 RMS 편차의 변이도 및 최종 시스템 수렴치로서 나타내었다.

  • PDF