단일 영상 초해상도 (Single Image Super-Resolution - SISR)기법은 카메라로 획득된 저해상도 영상에 필터 기반의 연산을 적용하여 좋은 화질의 고해상도 영상을 복원하는 과정이다. 최근에 심층 합성곱 신경망 학습의 발전에 따라 단일 영상 초해상도에 적용되는 심층 학습 기법들은 좋은 성과를 보여 주고 있다. 그 대표적인 방법으로 영상의 특징 맵 기반 웨이블릿 계수 학습을 통해 고해상도 영상을 복원하는 WaveletSRNet이 있다. 하지만 복잡한 알고리즘으로 인해 계산량이 증대되어 처리 속도가 늦고 특징 추출할 때 특징 맵을 효율적으로 활용하지 못 한다는 단점을 가지고 있다. 이를 개선하기 위해 본 논문에서는 단일 영상 초해상도 RDB-WaveletSRNet 기법을 제안한다. 제안된 기법은 잔여밀집블록(Residual Dense Block)을 사용하여 저해상도의 특징 맵을 효과적으로 추출하여 초해상도의 성능을 향상시키고 적절한 성장률을 설정하여 복잡한 계산량 문제까지 해결하였다. 또한 웨이블릿 패킷 분해를 사용하여 확대율에 맞게 웨이블릿 계수를 획득하므로 높은 확대율의 단일 영상 초해상도를 얻게 하였다. 다양한 영상에 대한 실험을 통하여, 제안하는 기법이 기존 기법보다 수행시간이 빠르며 영상 품질도 우수함을 입증하였다. 제안하는 방법은 기존 방법보다 화질은 PSNR 0.1813dB만큼 우수하며 속도는 1.17배 빠른 것을 실험을 통해 확인하였다.
차량 번호판 인식 카메라는 차량 번호판 내 문자와 숫자의 인식을 위하여 대상 차량의 이미지 취득을 목적으로 하는 전용 카메라를 말하며 대부분 단독 사용보다는 서버와 영상 분석 모듈과 결합된 시스템의 일부로 적용된다. 그러나 차량 번호판 인식을 위한 시스템 구축을 위해서는 취득 영상 관리 및 분석 지원을 위한 서버와 문자, 숫자의 추출 및 인식을 위한 영상 분석 모듈을 함께 구성하여야 하므로 구축을 위한 설비가 필요하고 초기 비용이 많이 든다는 문제점이 있다. 이에 본 연구에서는 카메라의 기능을 차량 번호판 인식에만 한정하지 않고 방범 기능을 함께 수행할 수 있도록 확장하고 카메라 단독으로도 두가지 기능 수행이 가능한 Edge Base의 임베디드형 융합 카메라를 개발한다. 임베디드형 융합 카메라는 선명한 영상 취득 및 빠른 데이터 전송을 위해 고해상도 4K IP 카메라를 탑재하고 오픈소스 신경망 알고리즘 기반의 다중 객체 인식을 위한 딥러닝 SW인 YOLO를 적용하여 차량 번호판 영역을 추출한 후 차량 번호판 내의 문자와 숫자를 검출하고 검출 정확도와 인식 정확도를 검증하여 CCTV 방범 기능과 차량 번호 인식 기능이 가능한지를 확인 하였다.
최근 중국에서 중대형 도시철도의 급속한 발전으로 고속철도의 총 운행거리와 총 EMU(Electric Multiple Units) 수가 증가하고 있다. 고속 EMU의 시스템 복잡성은 지속적으로 증가하고 있으며, 이는 장비의 안전성과 유지보수의 효율성에 대한 더 높은 요구사항을 제시한다. 현재 중국의 고속 EMU의 유지보수 모드는 여전히 계획적인 유지보수 및 고장보수에 기반한 사후 유지보수 방식을 채택하고 있어 유지보수가 미흡하거나 과도하게 이루어지며, 장비 고장 처리의 효율성을 떨어뜨리고 유지보수 비용을 증가시킨다. PHM(진단 및 예측관리)의 지능형 운영 및 유지관리 기술을 기반으로 합니다. 본 논문은 고속 EMU의 서로 다른 시나리오의 다중 소스 이기종 데이터를 통합하여 "차량 시스템-통신 시스템-지상 시스템"의 통합 PHM 플랫폼을 구축하고, 장비 고장 메커니즘을 인공지능 알고리즘과 결합하여 고속 EMU의 트랙션 모터에 대한 고장 예측 모델을 구축한다. 고속 EMU의 안전하고 효율적인 작동을 보장하기 위해 고장 예측 및 정확한 유지보수를 사전에 수행해야 한다.
이상 탐지는 일반적인 사용자들의 데이터 집합 속에서 비정상적인 데이터 흐름을 파악하여 미리 차단하는 방법이다. 기존에 알려진 방식은 이미 알려진 공격의 시그니처를 활용하여 시그니처 기반으로 공격을 탐지 및 방어하는 방식인데, 이는 오탐율이 낮다는 장점이 있지만 제로 데이 취약점 공격이나 변형된 공격에 대해서는 매우 취약하다는 점이 문제점이다. 하지만 이상 탐지의 경우엔 오탐율이 높다는 단점이 존재하지만 제로 데이 취약점 공격이나 변형된 공격에 대해서도 식별하여 탐지 및 차단할 수 있다는 장점이 있어 관련 연구들이 활발해지고 있는 중이다. 본 연구에서는 이 중 이상 탐지 메커니즘에 대해 다뤘다. 앞서 말한 단점인 높은 오탐율을 보완하며 그와 더불어 이상 탐지와 분류를 동시에 수행하는 새로운 메커니즘을 제안한다. 본 연구에서는 여러 알고리즘의 특성을 고려하여 5가지의 구성으로 실험을 진행하였다. 그 결과로 가장 우수한 정확도를 보이는 모델을 본 연구의 결과로 제안하였다. Extra Tree와 Three layer ANN을 동시에 적용하여 공격 여부를 탐지한 후 공격을 분류된 데이터에 대해서는 Extra Tree를 활용하여 공격 유형을 분류하게 된다. 본 연구에서는 NSL-KDD 데이터 세트에 대해서 검증을 진행하였으며, Accuracy는 Normal, Dos, Probe, U2R, R2L에 대하여 각각 99.8%, 99.1%, 98.9%, 98.7%, 97.9%의 결과를 보였다. 본 구성은 다른 모델에 비해 우수한 성능을 보였다.
딥러닝은 다량의 데이터 속에서 핵심적인 내용을 요약해 학습하는 알고리즘의 집합으로 의료영상 분야에서 병변을 진단하는 목적으로 사용되기 위해 발전하고 있다. 본 논문에서는 뇌출혈 진단 정확성을 평가하기 위해 CNN을 이용해 뇌실질 CT 영상과 뇌출혈이 의심되는 뇌실질 CT의 진단 정확도를 도출하였다. 은닉층 수에 따른 정확도를 비교한 결과 은닉층이 증가할수록 정확도가 높아졌다. 본 연구에서 도출된 CT 뇌출혈 유무 분석 결과는 앞으로 의료영상 분야와 인공지능 접목에 관한 연구에서 기초 자료로 사용될 것으로 사료된다.
본 연구논문에서는 LSTM 기반의 학습 모델 적용과 그 효용성을 높일 수 있도록 몇 가지 평활 기법을 비교, 적용하고자 한다. 적용된 평활 기법은 Savitky-Golay, 지수 평활법, 가중치 이동 평균 등이다. 본 연구를 통해 비트코인 데이터에 LSTM모델 적용 시 보여준 결과 값보다 전처리 과정에서 적용된 Savitky-Golay 필터가 적용된 LSTM 알고리즘이 예측 성능에 유의미한 좋은 결과를 보였다. 예측 성능 결과를 확인하기 위해 비트코인 가격 예측에 따른 복잡 요인을 제거하는데 사용된 LSTM의 경우와 Savitzky-Golay LSTM 모델에 따른 학습 손실율과 검증 손실율을 비교하고 그 신뢰성을 높일 수 있도록 20회 평균값으로 실험하였다. 그 결과 (3.0556, 0.00005), (1.4659, 0.00002)의 값을 얻을 수 있었다. 결과적으로는 비트코인과 같은 암호화폐가 주식보다 더한 변동성을 가지는 만큼 데이터 전처리 과정에서 평활 기법(Savitzky-Golay)을 적용하여 잡음(Noise)을 제거하였으며, 전처리 후의 데이터는 LSTM 신경망 학습을 통해서 비트코인 예측률을 높이는데 가장 유의미한 결과를 얻을 수 있었다.
본 논문에서는 패션 분야의 비정형 데이터 검색을 위한 패션 아이템별 세부 컨포넌트 이미지 분류 알고리즘을 제안한다. 코로나-19 환경으로 인하여 최근 AI 기반 쇼핑몰이 증가하는 추세이다. 하지만 기존의 키워드 검색과 사용자 서핑 행위 기반 개인 맞춤형 스타일 추천으로는 정확한 비정형 데이터 검색에는 한계가 있다. 본 연구는 다양한 온라인 쇼핑 사이트에서 크롤링한 이미지를 사용하여 Mask R-CNN을 활용한 전처리를 진행한 후, CNN을 통해 패션 아이템별 컴포넌트에 대한 분류를 진행하였다. 셔츠의 카라 및 패턴과 청바지의 핏, 워싱 및 컬러에 대한 분류를 진행하였으며, 다양한 전이학습 모델을 비교 분석한 후 가장 높은 정확도가 나온 Densenet121모델을 사용하여 셔츠의 카라는 93.28%, 셔츠의 패턴은 98.10%의 정확도를 도달하였으며, 청바지의 핏은 Notched, Spread, Straight 3가지의 클래스의 경우 91.73%, Regular 핏을 추가한 4가지의 클래스의 경우 81.59%, 청바지의 색상은 93.91%, 청바지의 Washing은 91.20%, 청바지의 Demgae는 92.96%의 정확도를 도출하였다.
고속철도 교량은 열차 하중에 의한 공진으로 인한 동적응답 증폭의 위험이 존재하므로 설계기준에 따른 동적해석을 통한 주행안전성 및 승차감 검토를 반드시 수행하여야 한다. 그러나 주행안전성 및 승차감 산정 절차는 열차의 종류별로 임계속도를 포함하여 설계속도의 110km/h까지 10km/h 간격으로 동적해석을 일일이 수행해야 하므로 많은 시간과 경비가 소요된다. 이 연구에서는 딥러닝 알고리즘을 활용하여 별도의 동적해석 없이 주행안전성 및 승차감을 사전에 예측할 수 있는 딥러닝 기반 예측 시스템 개발하였다. 제안된 시스템은 철도교량의 열차별, 속도별 동적해석 결과를 학습한 후 학습 완료된 신경망을 기반으로 한 예측 시스템이며, 열차속도, 교량 특성 등의 입력파라미터에 따른 주행안전성 및 승차감 산정 결과를 사전에 예측할 수 있다. 제안된 시스템의 성능을 확인하기 위하여 단경간 직선 단순보 교량을 대상으로 한 주행안전성 및 승차감 예측을 수행하였고, 주행안전성 및 승차감 산정을 위한 상판 연직변위 및 상판 연직가속도를 높은 정확도로 예측할 수 있음을 확인하였다.
사물인터넷 환경에서는 다양한 무선 통신 기술을 사용하는 기기들이 점점 증가하고 있다. 특히, 다양한 무선 신호 변조 유형을 정확하게 식별하기 위해 효율적인 특성 추출 기법을 설계하고 무선 신호의 종류를 분류하는 것이 필수적이다. 하지만, 실제 환경에서 레이블이 지정된 무선 신호 데이터를 수집하는 것은 쉬운 문제가 아니다. 최근 무선 신호 분류를 위해 딥러닝 기반의 다양한 학습 기법들이 제안되어졌다. 딥러닝의 경우 훈련 데이터셋이 적을 경우 과대적합에 빠질 가능성이 높으며, 이는 딥러닝 모델을 활용한 무선 신호 분류 기법의 성능 저하를 유발한다. 본 연구에서는 다양한 무선 신호들이 존재할 때 분류 성능을 높이기 위해 생성적 적대 신경망 기반 데이터 증대 기법을 제안한다. 분류해야 하는 무선 신호의 종류가 다양할 때 특정 무선 신호를 나타내는 데이터의 양이 적거나 균형이 맞지 않는 경우 제안한 기법을 활용하여 필요한 무선 신호와 관련된 데이터의 양을 증가시킨다. 제안한 데이터 증강 알고리즘의 유효성을 검증하기 위해 무선 신호의 데이터양을 증가시키고 균형을 맞춘 결과를 바탕으로 CNN 및 LSTM 기반 무선 신호 분류기를 구현하여 실험해본 결과 데이터 균형을 맞추지 않았을 때보다 분류 정확도가 높아지는 것을 확인하였다.
코로나 19 유행은 인류 생활 방식과 패턴에 큰 영향을 주었다. 코로나 19는 침 방울(비말)은 물론 공기를 통해서도 감염되기 때문에 가능한 대면 접촉을 피하고 많은 사람이 가까이 모이는 장소는 피할 것을 권고하고 있다. 코로나 19 환자와 접촉했거나 코로나 19 환자가 발생한 장소에 있었던 사람이 코로나 19에 감염되었을 것을 염려한다면 구글에서 코로나 19 증상을 찾아볼 것이라고 충분히 예상해 볼 수 있다. 본 연구에서는 과거 독감 감시와 관리에 중요 역할을 했었던 구글 트렌드(Google Trends)를 다시 소환하고 코로나 19 확진자수 데이터와 결합하여 미래의 코로나 19 확진자수를 예측할 수 있을지 딥러닝 모델(DNN & LSTM)을 사용한 탐색적 데이터 분석을 실시하였다. 특히 이 연구에 사용된 검색어 빈도 데이터는 공개적으로 사용할 수 있으며 사생활 침해의 우려도 없다. 심층 신경망 모델(DNN model)이 적용되었을 때 한국에서 가장 많은 인구가 사는 서울(960만 명)과 두 번째로 인구가 많은 부산(340만 명)에서는 검색어 빈도 데이터를 포함하여 예측했을 때 더 낮은 오류율을 기록했다. 이와 같은 분석 결과는 검색어 빈도 데이터가 일정 규모 이상의 인구수를 가진 도시에서 중요한 역할을 할 수 있다는 것을 보여주는 것이다. 우리는 이와 같은 예측이 더 강력한 예방 조치의 실행이나 해제 같은 정책을 결정하는데 근거 자료로 충분히 사용될 수 있을 것으로 믿는다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.