• 제목/요약/키워드: 신경망분류기

검색결과 326건 처리시간 0.031초

퍼지 신경망을 이용한 패턴 분류기의 설계 (Design of a pattern classifier using fuzzy neural networks)

  • 김재현;서일홍;김태원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.724-730
    • /
    • 1993
  • Most of clustering methods usually employ the center of a cluster to assign the input data into a cluster. When the shape of a cluster could not be easily represented by the center of cluster, however, it is difficult to assign input data into a proper cluster using previous methods. In this paper, to overcome such a difficulty, a cluster is to be represented as a collection of several subclusters. And membership functions are used to represent how much input data belong to subclusters. Then the position of each subcluster is adoptively corrected by use of a competitive learning neural network. To show the validity of the proposed method, a numerical example is illustrated, where FMMC(Fuzzy Min-Max Clustering) algorithm is compared with the proposed method.

  • PDF

신용카드 사기 검출을 위한 신경망 분류기의 진화 학습 (Evolutionary Learning of Neural Networks Classifiers for Credit Card Fraud Detection)

  • 박래정
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.400-405
    • /
    • 2001
  • This paper addresses an effective approach of training neural networks classifiers for credit card fraud detection. The proposed approach uses evolutionary programming to trails the neural networks classifiers based on maximization of the detection rate of fraudulent usages on some ranges of the rejection rate, loot minimization of mean square error(MSE) that Is a common criterion for neural networks learning. This approach enables us to get classifier of satisfactory performance and to offer a directive method of handling various conditions and performance measures that are required for real fraud detection applications in the classifier training step. The experimental results on "real"credit card transaction data indicate that the proposed classifiers produces classifiers of high quality in terms of a relative profit as well as detection rate and efficiency.

  • PDF

복합형GLVQ 신경망을 이용한 차종분류 모형개발 (The Development of a Model for Vehicle Type Classification with a Hybrid GLVQ Neural Network)

  • 조형기;오영태
    • 대한교통학회지
    • /
    • 제14권4호
    • /
    • pp.49-76
    • /
    • 1996
  • Until recently, the inductive loop detecters(ILD) have been used to collect a traffic information in a part of traffic manangment and control. The ILD is able to collect a various traffic data such as a occupancy time and non-occupancy time, traffic volume, etc. The occupancy time of these is very important information for traffic control algorithms, which is required a high accuracy. This accuracy may be improved by classifying a vehicle type with ILD. To classify a vehicle type based on a Analog Digital Converted data collect form ILD, this study used a typical and modifyed statistic method and General Learning Vector Quantization unsuperviser neural network model and a hybrid model of GLVQ and statistic method, As a result, the hybrid model of GLVQ neural network model is superior to the other methods.

  • PDF

동적모멘트를 이용한 Kernel Relaxation의 회귀율 향상 (Improvement Regression Rate of Kernel Relaxation using the Dynamic Momentum)

  • 김은미;양창호;이배호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.313-315
    • /
    • 2002
  • 본 논문에서는 학습 중 모멘트를 동적으로 조절하여 수련속도와 학습 성능을 향상시키는 동적모멘트를 제안하고 회귀방법으로 동적모멘트의 성능을 재확인한다. 제안된 학습방법은 기존의 정적모멘트와는 달리 수렴 정도에 따라 현재의 학습에 과거의 학습률을 단리 반영하는 방법으로 다른 학습법에 비해 보다 유연한 초평면을 갖으며 수렴에 이르는 시간이 오래 걸리는 KR(Kernel Relaxation)에 적용하여 그 성능을 확인한다. 본 논문에서 사용한 회귀방법은 RMS 오류율을 사용하였으며 제안된 학습방법인 동적모멘트를 SVM(support vector machine)의 순차 학습방법 중 최근 발표된 KR에 적용하여 RMS 오류율을 확인하였다. 실험의 공정성을 위해 신경망 분류기 표준평가데이터인 SONAR 데이터를 사용하였으며 실험 결과 동적모멘트를 이용한 회귀율이 정적모멘트를 이용한 방법보다 향상되었음을 확인하였다.

  • PDF

패턴분류기를 위한 최소오차율 학습알고리즘과 예측신경회로망모델에의 적용 (A Minimum-Error-Rate Training Algorithm for Pattern Classifiers and Its Application to the Predictive Neural Network Models)

  • 나경민;임재열;안수길
    • 전자공학회논문지B
    • /
    • 제31B권12호
    • /
    • pp.108-115
    • /
    • 1994
  • Most pattern classifiers have been designed based on the ML (Maximum Likelihood) training algorithm which is simple and relatively powerful. The ML training is an efficient algorithm to individually estimate the model parameters of each class under the assumption that all class models in a classifier are statistically independent. That assumption, however, is not valid in many real situations, which degrades the performance of the classifier. In this paper, we propose a minimum-error-rate training algorithm based on the MAP (Maximum a Posteriori) approach. The algorithm regards the normalized outputs of the classifier as estimates of the a posteriori probability, and tries to maximize those estimates. According to Bayes decision theory, the proposed algorithm satisfies the condition of minimum-error-rate classificatin. We apply this algorithm to NPM (Neural Prediction Model) for speech recognition, and derive new disrminative training algorithms. Experimental results on ten Korean digits recognition have shown the reduction of 37.5% of the number of recognition errors.

  • PDF

다중 PCA모듈을 이용한 얼굴포즈 판별 (Multiple PCA Module Face Pose Estimation)

  • 고재필;김선욱;변혜란
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.431-433
    • /
    • 2000
  • 본 논문에서는 얼굴인식에 주로 사용되는 PCA를 얼굴포즈판별로 적용해 보았다. 얼굴포즈판별은 개개인의 얼굴특징을 강조해야 하는 얼굴인식과는 달리 일반적인 얼굴특징을 이용하기 때문에 PCA에 적합한 응용분야이다. 그러나, 다양한 얼굴포즈에 대한 영상을 하나의 표본집합으로 사용하면, 표본집합의 분산이 크기 때문에 포즈별로 표본집합을 달리하여 PCA모듈을 구성하는 것이 타당하다. 표본수집의 어려움은 3차원 한국인 표준모형을 이용해 극복하고, 이를 통하여 다양한 조명방향 및 얼굴포즈에 대한 표본을 수집하였다. 5방향의 얼굴포즈에 대한 판별 실험을 통하여 모율화된 PCA의 분류기로서의 가능성을 살펴보고, 조명에 따른 오류를 완하하고자 비 선형적 패턴을 나타내는 각 PCA모듈의 결과를 신경망에 적용하여 보았다.

  • PDF

퍼지 신경 회로망을 이용한 패턴 분류기의 설계 (Design of the Pattern Classifier using Fuzzy Neural Network)

  • 김문환;이호재;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2573-2575
    • /
    • 2003
  • In this paper, we discuss a fuzzy neural network classifier with immune algorithm. The fuzzy neural network classifier is constructed with the fuzzy classifier and the neural network classifier based on fuzzy rules. To maximize performance of classifier, the immune algorithm and the back propagation algorithm are used. For the generalized classification ability, the simulation results from the iris data demonstrate superiority of the proposed classifier in comparison with other classifier.

  • PDF

SIFT 서술자를 이용한 오프라인 필기체 문자 인식 특징 추출 기법 (Feature Extraction for Off-line Handwritten Character Recognition using SIFT Descriptor)

  • 박정국;김경중
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.496-500
    • /
    • 2010
  • 본 논문에서는 SIFT(Scale Invariant Feature Transform) 기술자를 이용하여 오프라인 필기체 문자 인식을 위한 특징 추출방법을 제안한다. 제안하는 방법은 문자의 획의 방향 정보를 제공하는 특징 벡터를 추출함으로써 오프라인 문자 인식에서 성능 향상을 기대할 수 있다. 테스트를 위해 MNIST 필기체 데이터베이스와 UJI Penchar2 필기체 데이터베이스를 이용하였고, BP(backpropagation)신경망과 LDA(Linear Discriminant Analysis), SVM(Support Vector Machine) 분류기에서 성능 테스트를 하였다. 본 논문의 실험결과에서는 일반적으로 사용되는 특징추출로부터 얻어진 특징에 제안된 특징추출을 정합하여 성능항샹을 보인다.

  • PDF

텍스트 문서 인식을 위한 학습 기반 단어 분할 (Learning-based Word Segmentation for Text Document Recognition)

  • 로말리자쟝피에르;문광석;박한훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.41-42
    • /
    • 2018
  • 텍스트 문서 영상으로부터 단어를 검출하고, LLAH(locally likely arrangement hashing) 알고리즘을 이용하여 이웃 단어 사이의 기하 관계를 표현하는 특징 벡터를 계산한 후, 특징 벡터를 비교함으로써 텍스트 문서를 효과적으로 인식하거나 검색할 수 있다. 그러나, 이는 문서 내 각 단어가 정확하고 강건하게 검출된다는 전제를 필요로 한다. 본 논문에서는 텍스트 내 각 라인을 검출하고, 각 라인 내에서 단어 사이의 간격과 글자 사이의 간격을 깊은 신경망(deep neural network)을 이용하여 학습하고 분류함으로써, 보다 카메라와 텍스트 문서 사이의 거리나 방향이 동적으로 변하는 조건에서 각 단어를 강건하게 검출하는 방법을 제안한다. 모바일 환경에서 제안된 방법을 구현하였으며, 실험을 통해 단어 사이의 간격과 글자 사이의 간격을 92.5%의 정확도로 구별할 수 있으며, 이를 통해 동적인 환경에서 단어 검출의 강건성을 크게 개선할 수 있음을 확인하였다.

  • PDF

적대적 생성 신경망과 장단기 메모리셀을 이용한 낙상 검출 (Fall detection based on GAN and LSTM)

  • 신효진;우지영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.21-22
    • /
    • 2023
  • 본 논문에서는 낙상과 비낙상 구별을 위한 분류 모델을 제안한다. 일상생활과 낙상을 구분해 내는 것은 낙상이 발생하기 이전에 감지하고 사고를 예방할 수 있다. 낙상은 일상생활 중 일어나기 쉬우며, 노인들에게는 골절 및 기관 파열 등과 같은 심각한 부상을 초래할 수 있기 때문에 낙상 방지를 위한 낙상과 비낙상 행동의 구분은 중요한 문제이다. 따라서 실시간으로 수집되는 다양한 활동에서의 센서 데이터를 활용하여 낙상과 비낙상의 행동을 구분하였다.

  • PDF