• 제목/요약/키워드: 신경망분류기

검색결과 326건 처리시간 0.026초

신경망을 이용한 루프검지기 차종분류 알고리즘 (ILD Vehicle Classification Algorithm using Neural Networks)

  • 기용걸;백두권
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권5호
    • /
    • pp.489-498
    • /
    • 2006
  • 본 논문은 루프검지기를 이용한 차종분류 방법의 성능 향상을 위해 신경망 패턴인식 기술을 이용한 차종분류 알고리즘을 제안하였다. 기존의 루프검지기 차종분류 방법은 차량의 길이 정보만을 이용해서 차종을 분류하는 것이다. 그러나 루프검지기의 특성상 차종에 따른 길이 정보가 정확하지 않으므로 길이가 비슷한 차종에 대해서는 차종분류 오류가 자주 발생하고 있는 실정이다. 이와 같은 문제점을 개선하기 위해 본 연구에서는 루프검지기 시스템에 신경망 패턴 인식 기술을 적용하였다. 제안된 알고리즘은 차량이 검지영역을 통과할 때 발생하는 루프검지기 공진주파수 값 변화율과 점유시간 정보를 신경망의 입력자료로 활용하여 차량을 5가지 종류로 분류하는 방식이다. 개발된 알고리즘의 성능을 평가하기 위하여, 현장실험을 통해 자료를 수집하고 신경망 학습 및 실험을 실시한 결과 차종분류 정확도가 91.3%였으며, 이는 기존의 연구결과와 비교할 때 매우 높은 것이다.

신경망을 이용한 내용 기반 이미지 분류 (A Contents-Based Image Classification Using Neural Network)

  • 이재원;김상균
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 춘계학술발표논문집
    • /
    • pp.177-180
    • /
    • 2001
  • 본 논문에서는 신경망을 이용한 내용 기반 이미지 분류 방법을 제안한다. 분류 대상이미지는 인터넷상의 다양한 이미지들 중 오브젝트 이미지이대 웹 에이전트를 통하여 획득하고 정규화 과정을 거친다. 획득한 이미지를 분류하기 위한 특징은 웨이블릿 변란 후 추출된 질감 특징이다. 추출된 질감 특징을 이용하여 학습패턴을 생성하고 신경망을 학습한다. 그리고 구성된 신경망 분류기로 이미지를 분류한다. 본 연구에서는 다양한 질감 특징들 중에서 대비(contrast), 에너지(energy), 엔트로피(entropy)를 이용하여 특징을 추출한다. 실험에 사용한 데이터는 30종류에 대하여 각각 10개씩, 300개의 이미지들을 학습 데이터, 테스트 데이터로 사용하여 구성된 분류기의 인식률을 실험하였다.

  • PDF

인쇄체 및 필기체 숫자의 효율적인 구분 인식 알고리즘 (An Efficient Classifying Recognition Algorithm of Printed and handwritten numerals)

  • 홍연찬
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.517-525
    • /
    • 1999
  • 본 논문에서는 인쇄체가 대부분을 차지하는 우편물의 우편번호 분류기에 적용하기 위해 인쇄체 및 필기체를 구분하여 인쇄체는 단일 특징과 단일 신경망으로 저차 연산함으로써 빠르게 분류하고 피기체는 복합특징과 클러스터 신경망을 통한 고차연산으로 정확한 분류를 할 수 있는 속도 면에서 효율적인 신경망 분류기를 제안한다. 제안된 분류기는 인쇄체와 필기체를 구분하여 인쇄체를 분류하는 인쇄체 분류기와 여기서 기각된 필기체 숫자를 인식하는 필기체 분류기로 구성된다. 인쇄체 분류기는 망 특징 벡터를 입력의 단일 신경망 인식기로 빠르게 인쇄체 및 정확히 필기된 필기체를 분류하며그 외의 입력패턴에 대해서는 기각한다. 그리고 필기체 분류기는 4방향 특징 및 앞단에서 추출된 망 특징의 복합특징 벡터 입력으로 [11]에서 제안된 클러스터 신경망을 이용하여 정확한 분류를 할수 있도록 구성하였다. 제안된 방법의 성능을 객관적으로 검증하기 위하여 숫자 인식 데이터 베이스로 많이 사용되는 NIST의 필기체 숫자 데이터 베이스 및 자체적으로 구성한 인쇄체 숫자 데이터에 대해 실험하였다. 임의의 NIST 필기체 숫자 데이터 500자와 인쇄체 숫자 데이터 500자에 대해 전처리와 특징추출을 제외한 분류시간측정 결과 제안된 방법을 필기체 분류기에 사용할 경우 인쇄체와 필기체의 비율에 따라 49.1%~65.5% 향상된 속도로 분류함으로써 제안된 방법을 필기체 분류기에 적용함으로써 속도 면에서 효율적임을 나타냈다.

  • PDF

데이터 마이닝을 위한 LVQ 기반 신경 트리 분류기 (Neural Tree Classifier based on LVQ for Data Mining)

  • 김세현;김은주;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.157-159
    • /
    • 2001
  • 신경 트리는 신경망과 결정 트리의 구조를 결합한 형태의 분류기로서 비선형적 결정 경계 형성이 가능하며 기존 신경망에 비해 학습, 출력시 계산량이 적다는 장점을 갖는다. 본 논문에서는 신경 트리의 노드를 구성하는 신경망을 학습하기 위하여 기존의 방법들과는 달리 교사 학습 방법인 LVQ3 알고리즘을 사용하는 신경 트리 분류기를 제안한다. 학습 과정을 통해 생성된 트리는 오인식율 추정을 이용한 가지치기를 통하여 효율적인 트리로 재구성된다. 제안하는 방법은 실제 데이터 집합들을 이용한 실험을 통하여 그 성능을 검증하였다.

  • PDF

신경망을 결합한 다중 SVM 분류기 (A Multiple SVM Classifier Combined With Neural Networks)

  • 고재필;김승태;김은주;변혜란
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.163-165
    • /
    • 2001
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로서 Support Vector Machine(SVM)이 주목받고 있다. SVM은 통계학자인 Vapnik에 의해 제안된 것으로 통계적 학습이론에 기반 하여 뛰어난 일반화 성능을 보여준다. 그러나. SVM은 2클래tm 분류기이므로 일반적인 다중 클래스 패턴인식 문제에 적용할 수 없다. 본 논문에서는 이를 해결하기 위해 SVM을 신경망과 결합하여 다중 클래스 분류기로 확장하는 방법을 새롭게 제안한다. 제안하는 분류기의 성능을 비교하기 위하여 ORL얼굴 데이터를 이용하여 제안하는 분류기와 기존의 대표적인 다중 SVM, 신경망, PCA를 적응한 얼굴인식 실험을 수행하였다. 실험결과 제안하는 분류기를 이용한 얼굴인식률이 기존의 다중 SVM을 이용한 경우보다 3%, 신경망을 이용한 경우보다 6% 높은 수치를 보였다.

  • PDF

수정된 카오스 신경망을 이용한 무제약 서체 숫자 인식 (Recognition of Unconstrained Handwritten Numerals using Modified Chaotic Neural Networks)

  • 최한고;김상희;이상재
    • 융합신호처리학회논문지
    • /
    • 제2권1호
    • /
    • pp.44-52
    • /
    • 2001
  • 본 논문은 수정된 카오틱 신경망(MCNN)을 이용하여 완전 무제약 서체 숫자 인식을 다루고 있다. 카오틱 신경망(CNN)의 동적 특성과 학습과정을 강화함으로써 복잡한 패턴인식 문제를 해결할 수 있는 유용한 신경망으로 수정하였다. MCNN은 신경망 구조와 뉴런 자체가 높은 차수의 비선형 동적특성을 갖고 있으므로 복잡한 서체 숫자를 분류할 수 있는 적합한 신경망이다. 숫자 확인은 원래의 숫자 이미지로부터 특징을 추출하고 MCNN에 근거한 분류기를 이용하여 숫자를 인식한다. MCNN 분류기의 성능은 Canada, Montreal의 Concordia 대학의 숫자 데이터 베이스로 평가하였다. 인식성능의 상대적인 비교를 위해 MCNN 분류기는 리커런트 신경망(RNN) 분류기와 비교하였다. 실험결과에 의하면 인식율은 98.0%이었으며, 이는 MCNN 분류기가 같은 데이터 베이스에 대해 발표되었던 다른 분류기와 RNN 분류기보다 성능이 우수함을 나타낸다.

  • PDF

한국어 문서 분류를 위한 신경망 구조 탐색 (Neural Architecture Search for Korean Text Classification)

  • 지병규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.125-130
    • /
    • 2023
  • 최근 심층 신경망을 활용한 한국어 자연어 처리에 대한 관심이 높아지고 있지만, 한국어 자연어 처리에 적합한 신경망 구조 탐색에 대한 연구는 이뤄지지 않았다. 본 논문에서는 문서 분류 정확도를 보상으로 하는 강화 학습 알고리즘을 이용하여 장단기 기억 신경망으로 한국어 문서 분류에 적합한 심층 신경망 구조를 탐색하였으며, 탐색을 위해 사전 학습한 한국어 임베딩 성능과 탐색한 신경망 구조를 분석하였다. 탐색을 통해 찾아낸 신경망 구조는 기존 한국어 자연어 처리 모델에 대해 4 가지 한국어 문서 분류 과제로 비교하였을 때 일반적으로 성능이 우수하고 모델의 크기가 작아 효율적이었다.

  • PDF

토지피복분류에 있어 신경망과 최대우도분류기의 비교 (A comparison of neural networks and maximum likelihood classifier for the classification of land-cover)

  • 전형섭;조기성
    • 대한공간정보학회지
    • /
    • 제8권2호
    • /
    • pp.23-33
    • /
    • 2000
  • 본 연구에서는 인공위성영상을 이용한 토지피복 분류방법 중 파라메트릭한 분류와 비-파라메트릭한 분류의 대표성을 띤 최대우도 분류법과 신경망을 이용한 분류방법을 사용하여 분류정확도를 비교하였다. 분류정확도의 평가에 있어서 일반적인 분석가들이 사용하는 훈련지역에 대한 분류정확도의 분석뿐만 아니라, 시험지역에 대한 정확도분석을 하였다. 그 결과, 최대우도분류기에 비하여 신경망의 분류기가 일반적인 훈련데이터의 분류에 있어서 약 3% 우월하였으며, 지상검증데이터를 사용한 분류결과에서는 시험에 사용된 두 분류기 모두 빈약한 분류결과를 나타내었으나, 신경망에 의한 분류가 최대우도에 비하여 약 10%정도 보다 신뢰할 수 있는 결과를 얻을 수 있었다.

  • PDF

적응형 AE신호 형상 인식 프로그램 개발자 회전체 금속 접촉부 이상 분류에 관한 적용 연구 (Development of Adaptive AE Signal Pattern Recognition Program and Application to Classification of Defects in Metal Contact Regions of Rotating Component)

  • 이강용;이종명;김준섭
    • 비파괴검사학회지
    • /
    • 제15권4호
    • /
    • pp.520-530
    • /
    • 1996
  • 본 연구에서는 음향방출법을 이용하여 로터리 압축기의 인공 결함을 분류하기 위한 연구를 수행하였다. 이를 위해 프로그램을 개발하였고 선형 분류기, 경험적 Bayesian 분류기, 신경 회로망 분류기를 함께 사용하여 비교하였다. 그 결과 신경 회로망 분류기가 인식률 면에서 유리하였으며 신경 회로망 분류기의 경우 99%이상의 인식률을 얻을 수 있었다.

  • PDF

보로노이 공간분류를 활용한 원격 영상 패턴분류 시스템 (Pattern Classification System for Remote Sensing Data using Voronoi Diagram)

  • 백주현;김홍기
    • 정보처리학회논문지B
    • /
    • 제8B권4호
    • /
    • pp.335-342
    • /
    • 2001
  • 본 논문은 보로노이 공간분류를 활용하여 원격탐사 영상인식을 위한 다층 신경망 분류기를제안한다. 제안된 다층 신경망 분류기는 보로노이 다각형 영역으로 클래스를 구분하며, 초평면 방정식의 계수를 오류 역전과 학습 초기의 연결 강도, 임계치 그리고 은닉층의 노드 수로 결정한다. 제안된 방법은 오류역전과 학습 알고리즘에서 임의로 정해주던 초기 정보를 사전 분석에 의해 공학적으로 결정함으로써 느린 수렴 속도와 학습실패 등의 단점을 피할 수 있는 장점이 있다. 보로노이 다이어그램에 대한 경계선의 초평면 방정식은 훈련집합의 클래스별 평균값을 구하여 Mathematica 패키지로 계산하였다. 제안된 다층 신경망에 의한 영상분류기의 인식능력을 평가하기 위하여 원격탐사 영상인식에서 자주 활용되는 최소거리 분류 방법과 최대우도 분류 방법으로 처리해서 비교한 결과, 최소거리 분류 방법은 실험화상에 대해 81.4%, 최대우도 부류기에 의한 분류는 87.8%, 제안한 방법은 92.2% 정확성을 가진 분류결과를 나타냈다.

  • PDF