본 논문은 루프검지기를 이용한 차종분류 방법의 성능 향상을 위해 신경망 패턴인식 기술을 이용한 차종분류 알고리즘을 제안하였다. 기존의 루프검지기 차종분류 방법은 차량의 길이 정보만을 이용해서 차종을 분류하는 것이다. 그러나 루프검지기의 특성상 차종에 따른 길이 정보가 정확하지 않으므로 길이가 비슷한 차종에 대해서는 차종분류 오류가 자주 발생하고 있는 실정이다. 이와 같은 문제점을 개선하기 위해 본 연구에서는 루프검지기 시스템에 신경망 패턴 인식 기술을 적용하였다. 제안된 알고리즘은 차량이 검지영역을 통과할 때 발생하는 루프검지기 공진주파수 값 변화율과 점유시간 정보를 신경망의 입력자료로 활용하여 차량을 5가지 종류로 분류하는 방식이다. 개발된 알고리즘의 성능을 평가하기 위하여, 현장실험을 통해 자료를 수집하고 신경망 학습 및 실험을 실시한 결과 차종분류 정확도가 91.3%였으며, 이는 기존의 연구결과와 비교할 때 매우 높은 것이다.
본 논문에서는 신경망을 이용한 내용 기반 이미지 분류 방법을 제안한다. 분류 대상이미지는 인터넷상의 다양한 이미지들 중 오브젝트 이미지이대 웹 에이전트를 통하여 획득하고 정규화 과정을 거친다. 획득한 이미지를 분류하기 위한 특징은 웨이블릿 변란 후 추출된 질감 특징이다. 추출된 질감 특징을 이용하여 학습패턴을 생성하고 신경망을 학습한다. 그리고 구성된 신경망 분류기로 이미지를 분류한다. 본 연구에서는 다양한 질감 특징들 중에서 대비(contrast), 에너지(energy), 엔트로피(entropy)를 이용하여 특징을 추출한다. 실험에 사용한 데이터는 30종류에 대하여 각각 10개씩, 300개의 이미지들을 학습 데이터, 테스트 데이터로 사용하여 구성된 분류기의 인식률을 실험하였다.
본 논문에서는 인쇄체가 대부분을 차지하는 우편물의 우편번호 분류기에 적용하기 위해 인쇄체 및 필기체를 구분하여 인쇄체는 단일 특징과 단일 신경망으로 저차 연산함으로써 빠르게 분류하고 피기체는 복합특징과 클러스터 신경망을 통한 고차연산으로 정확한 분류를 할 수 있는 속도 면에서 효율적인 신경망 분류기를 제안한다. 제안된 분류기는 인쇄체와 필기체를 구분하여 인쇄체를 분류하는 인쇄체 분류기와 여기서 기각된 필기체 숫자를 인식하는 필기체 분류기로 구성된다. 인쇄체 분류기는 망 특징 벡터를 입력의 단일 신경망 인식기로 빠르게 인쇄체 및 정확히 필기된 필기체를 분류하며그 외의 입력패턴에 대해서는 기각한다. 그리고 필기체 분류기는 4방향 특징 및 앞단에서 추출된 망 특징의 복합특징 벡터 입력으로 [11]에서 제안된 클러스터 신경망을 이용하여 정확한 분류를 할수 있도록 구성하였다. 제안된 방법의 성능을 객관적으로 검증하기 위하여 숫자 인식 데이터 베이스로 많이 사용되는 NIST의 필기체 숫자 데이터 베이스 및 자체적으로 구성한 인쇄체 숫자 데이터에 대해 실험하였다. 임의의 NIST 필기체 숫자 데이터 500자와 인쇄체 숫자 데이터 500자에 대해 전처리와 특징추출을 제외한 분류시간측정 결과 제안된 방법을 필기체 분류기에 사용할 경우 인쇄체와 필기체의 비율에 따라 49.1%~65.5% 향상된 속도로 분류함으로써 제안된 방법을 필기체 분류기에 적용함으로써 속도 면에서 효율적임을 나타냈다.
신경 트리는 신경망과 결정 트리의 구조를 결합한 형태의 분류기로서 비선형적 결정 경계 형성이 가능하며 기존 신경망에 비해 학습, 출력시 계산량이 적다는 장점을 갖는다. 본 논문에서는 신경 트리의 노드를 구성하는 신경망을 학습하기 위하여 기존의 방법들과는 달리 교사 학습 방법인 LVQ3 알고리즘을 사용하는 신경 트리 분류기를 제안한다. 학습 과정을 통해 생성된 트리는 오인식율 추정을 이용한 가지치기를 통하여 효율적인 트리로 재구성된다. 제안하는 방법은 실제 데이터 집합들을 이용한 실험을 통하여 그 성능을 검증하였다.
최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로서 Support Vector Machine(SVM)이 주목받고 있다. SVM은 통계학자인 Vapnik에 의해 제안된 것으로 통계적 학습이론에 기반 하여 뛰어난 일반화 성능을 보여준다. 그러나. SVM은 2클래tm 분류기이므로 일반적인 다중 클래스 패턴인식 문제에 적용할 수 없다. 본 논문에서는 이를 해결하기 위해 SVM을 신경망과 결합하여 다중 클래스 분류기로 확장하는 방법을 새롭게 제안한다. 제안하는 분류기의 성능을 비교하기 위하여 ORL얼굴 데이터를 이용하여 제안하는 분류기와 기존의 대표적인 다중 SVM, 신경망, PCA를 적응한 얼굴인식 실험을 수행하였다. 실험결과 제안하는 분류기를 이용한 얼굴인식률이 기존의 다중 SVM을 이용한 경우보다 3%, 신경망을 이용한 경우보다 6% 높은 수치를 보였다.
본 논문은 수정된 카오틱 신경망(MCNN)을 이용하여 완전 무제약 서체 숫자 인식을 다루고 있다. 카오틱 신경망(CNN)의 동적 특성과 학습과정을 강화함으로써 복잡한 패턴인식 문제를 해결할 수 있는 유용한 신경망으로 수정하였다. MCNN은 신경망 구조와 뉴런 자체가 높은 차수의 비선형 동적특성을 갖고 있으므로 복잡한 서체 숫자를 분류할 수 있는 적합한 신경망이다. 숫자 확인은 원래의 숫자 이미지로부터 특징을 추출하고 MCNN에 근거한 분류기를 이용하여 숫자를 인식한다. MCNN 분류기의 성능은 Canada, Montreal의 Concordia 대학의 숫자 데이터 베이스로 평가하였다. 인식성능의 상대적인 비교를 위해 MCNN 분류기는 리커런트 신경망(RNN) 분류기와 비교하였다. 실험결과에 의하면 인식율은 98.0%이었으며, 이는 MCNN 분류기가 같은 데이터 베이스에 대해 발표되었던 다른 분류기와 RNN 분류기보다 성능이 우수함을 나타낸다.
최근 심층 신경망을 활용한 한국어 자연어 처리에 대한 관심이 높아지고 있지만, 한국어 자연어 처리에 적합한 신경망 구조 탐색에 대한 연구는 이뤄지지 않았다. 본 논문에서는 문서 분류 정확도를 보상으로 하는 강화 학습 알고리즘을 이용하여 장단기 기억 신경망으로 한국어 문서 분류에 적합한 심층 신경망 구조를 탐색하였으며, 탐색을 위해 사전 학습한 한국어 임베딩 성능과 탐색한 신경망 구조를 분석하였다. 탐색을 통해 찾아낸 신경망 구조는 기존 한국어 자연어 처리 모델에 대해 4 가지 한국어 문서 분류 과제로 비교하였을 때 일반적으로 성능이 우수하고 모델의 크기가 작아 효율적이었다.
본 연구에서는 인공위성영상을 이용한 토지피복 분류방법 중 파라메트릭한 분류와 비-파라메트릭한 분류의 대표성을 띤 최대우도 분류법과 신경망을 이용한 분류방법을 사용하여 분류정확도를 비교하였다. 분류정확도의 평가에 있어서 일반적인 분석가들이 사용하는 훈련지역에 대한 분류정확도의 분석뿐만 아니라, 시험지역에 대한 정확도분석을 하였다. 그 결과, 최대우도분류기에 비하여 신경망의 분류기가 일반적인 훈련데이터의 분류에 있어서 약 3% 우월하였으며, 지상검증데이터를 사용한 분류결과에서는 시험에 사용된 두 분류기 모두 빈약한 분류결과를 나타내었으나, 신경망에 의한 분류가 최대우도에 비하여 약 10%정도 보다 신뢰할 수 있는 결과를 얻을 수 있었다.
본 연구에서는 음향방출법을 이용하여 로터리 압축기의 인공 결함을 분류하기 위한 연구를 수행하였다. 이를 위해 프로그램을 개발하였고 선형 분류기, 경험적 Bayesian 분류기, 신경 회로망 분류기를 함께 사용하여 비교하였다. 그 결과 신경 회로망 분류기가 인식률 면에서 유리하였으며 신경 회로망 분류기의 경우 99%이상의 인식률을 얻을 수 있었다.
본 논문은 보로노이 공간분류를 활용하여 원격탐사 영상인식을 위한 다층 신경망 분류기를제안한다. 제안된 다층 신경망 분류기는 보로노이 다각형 영역으로 클래스를 구분하며, 초평면 방정식의 계수를 오류 역전과 학습 초기의 연결 강도, 임계치 그리고 은닉층의 노드 수로 결정한다. 제안된 방법은 오류역전과 학습 알고리즘에서 임의로 정해주던 초기 정보를 사전 분석에 의해 공학적으로 결정함으로써 느린 수렴 속도와 학습실패 등의 단점을 피할 수 있는 장점이 있다. 보로노이 다이어그램에 대한 경계선의 초평면 방정식은 훈련집합의 클래스별 평균값을 구하여 Mathematica 패키지로 계산하였다. 제안된 다층 신경망에 의한 영상분류기의 인식능력을 평가하기 위하여 원격탐사 영상인식에서 자주 활용되는 최소거리 분류 방법과 최대우도 분류 방법으로 처리해서 비교한 결과, 최소거리 분류 방법은 실험화상에 대해 81.4%, 최대우도 부류기에 의한 분류는 87.8%, 제안한 방법은 92.2% 정확성을 가진 분류결과를 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.