In this study, information on vegetation was collected using a point cloud through a 3-D Terrestrial Lidar Scanner, and the physical shape was analyzed by reconfiguring the object based on the refined data. Each filtering step of the raw data was optimized, and the reference volume and the estimated results using the Alpha Shape and Voxel techniques were compared. As a result of the analysis, when the volume was calculated by applying the Alpha Shape, it was overestimated than reference volume regardless of data filtering. In addition, the Voxel method to be the most similar to the reference volume after the 8th filtering, and as the filtering proceeded, it was underestimated. Therefore, when re-implementing an object using a point cloud, internal voids due to the complex shape of the target object must be considered, and it is necessary to pay attention to the filtering process for optimal data analyzed in the filtering process.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2008.10a
/
pp.21-25
/
2008
최근 측량기술이 발전함에 따라 다양한 지형공간정보를 획득할 수 있게 되었다. 특히 레이저스캐닝 기술의 도입은 정밀한 지형과 식생 및 인공지물 등에 대한 정보를 신속하게 획득하여 원하는 최신 정보를 가공할 수 있게 되었다. 본 연구에서는 라이다의 식생 데이터에서 점의 밀도 분포를 통하여 정량적인 식생분포 분석을 실시하였다. 또한, 정밀한 지형 모델에 대하여 생성되는 라이다 등고선의 효율적인 활용을 위하여 단계별로 필터링을 실시하여 정확성은 유지하면서 저용량의 등고선을 생성하고 도로 및 엔지니어링 분야 활용을 높일 수 있도록 하였다. 이러한 지능적이고 과학적인 연구는 국내 라이다데이터의 적극적인 활용성을 높이고 누구나 쉽게 사용할 수 있도록 하는데 목적이 있으며, 건설 분야뿐만 아니라 생태지도 및 주제도, 재해 환경 분야, 홍수지도, 도시모델링 등 다양한 분야의 활용성을 가능하도록 한다.
This study investigated the application of terrestrial light detection and ranging (LiDAR) to inspect the defects of the vegetated levee. The accuracy of vegetation filtering techniques was compared by applying filtering techniques on photogrammetric point clouds of a vegetated levee generated by terrestrial LiDAR. Representative 10 vegetation filters such as CIVE, ExG, ExGR, ExR, MExG, NGRDI, VEG, VVI, ATIN, and ISL were applied to point cloud data of the Imjin River levee. The accuracy order of the 10 techniques based on the results was ISL, ATIN, ExR, NGRDI, ExGR, ExG, MExG, VVI, VEG, and CIVE. Color filters show certain limitations in the classification of vegetation and ground and classify grass flower image as ground. Morphological filters show a high accuracy of the classification, but they classify rocks as vegetation. Overall, morphological filters are superior to color filters; however, they take 10 times more computation time. For the improvement of the vegetation removal, combined filters of color and morphology should be studied.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.25
no.1
/
pp.55-62
/
2007
Recent advances in airborne LiDAR technology allow rapid and inexpensive measurements of topography over large areas. The generation of DTM/DEM is essential to numerous applications such as the fields of civil engineering, environment, city planning and flood modeling. The demand for LiDAR data is increasing due to the reduced cost for DTM generation and the increased reliability, precision and completeness. In order to generate DTM, measurements from non-ground features such as building and vegetation have to be classified and removed. In this paper, a segmented morphology filter was developed to detect non-ground LiDAR measurements. First, segments LiDAR point clouds based on the elevation. Secondly classifies those protruding segments into non-ground points. Those non-ground points such as building and vegetation are removed, while ground points are preserved for DTM generation. For experiments, data sets used in Comparison of Filters (ISPRS, 2003) depicting urban and rural areas were selected. The experimental results show that the proposed filter can remove most of the non-ground points effectively with less commission and omission errors.
3차원 자료의 필요에 발맞추어 3차원 좌표를 직접적으로 획득할 수 있는 LIDAR 시스템이 등장하게 되었다 항공 LIDAR 시스템은 항공기, GPS, INS, Laser Scanner가 통합된 시스템으로 항공기에서 발사된 Laser의 반사파를 이용하여 거리와 그 때의 항공기의 자세, 위치를 통합하여 직접적인 3차원 포인트 자료를 획득할 수 있다. LiDAR 데이터는 지형, 건물, 식생 등의 지면위에 있는 모든 객체에 대한 3차원 자료와 영상자료를 함께 제공하고 있다. 이러한 LIDAR 자료로부터 DEM, DTM 등의 지형 정보와 식목, 건물 등 지물정보를 추출하는 연구가 활발하게 이루어지고 있다. 본 연구에서는 지형을 추출하는데 사용할 수 있는 몇 가지 필터링기법을 선정하여 국내의 다양한 지모, 지물에 적용하고 그 정확도를 평가해 보았다.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.1073-1077
/
2006
급속한 산업화로 인한 오염물질의 증가와 생물서식처의 감소는 수자원과 생태계를 위협하고 있다. 국내의 경우 수자원의 질을 개선하기 위해 '90년대 초부터 하수처리시설 등의 저감시설을 대폭 확충하였으나 현재까지 팔당호 등 주요상수원이 목표수질에 못 미치고 있으며 그 원인은 유입오염물질의 $22{\sim}37%$를 차지하는 비점오염원으로 지목되고 있다. 또한 생태.경관적 가치가 높은 수변지역은 각종 개발로 생물서식처가 급속도로 감소하여 종 다양성 보전 측면에서 대책마련이 시급한 실정이다. 이와 유사한 상황에 직면한 선진외국에서는 '하천회랑(river corridor)' 또는 '토양 및 생태시스템을 포함하는 수역과 육역의 점이(漸移)지대'를 의미하는 이른바 '수변완충지대(Riparian Buffer Zones)'의 오염정화 및 생태조성 효과 등의 연구를 통해 효율적 조성방안을 제시하고 있으며 다양한 형태로 현장에 적용하고 있다. RBZs의 일반적인 기능으로는, 유사나 오염물질의 여과 및 차단(필터링 효과), 영양염류의 저감, 하천변 식생을 통한 수자원의 정화 및 강턱의 안정화, 홍수로 인한 하천침식의 방지, 수변 생물 서식처 제공, 수변 그늘 제공에 의한 수온상승 방지, 심미 교육 위락 공간 제공 등이다. 본 연구에서는 외국의 RBZs(Riparian Buffer Zones)가이드라인을 참고하여 국내실정에 맞는 파일럿 규모의 시험완충지를 설계 및 조성하였다. 시험완충지는 남한강 연안에 초본류, 갈대류, 관목류, 자연식생, 혼합식생 등 5가지 'dry biotope'형태로 설치하여 1년간 계절별로 운영하였다. 또한 실험의 정량화와 다양한 조건변화를 위해 차수막, 위어, 유량.농도 조절장치, 라이시미터 등 보조시설을 설치하였고, 정기적인 모니터링을 실시하였다. 조사결과 외국사례를 살펴보면 RBZs의 적정 폭은 수질정화기능의 경우 $15{\sim}30m$, 생태서식처 기능은 최소 90m이상으로 제시되며, 시험완충지의 수질정화효과는 SS, T-N, T-P, TOC의 평균저감율이 각각 50%이상으로 나타났다. 식생모니터링 결과, 환삼덩굴 등 우점종의 잠식속도는 약 15일이며 갈대와 갯버들의 경우 우기시 인공목책호안과 동일한 침식방지 효과를 보이는 것으로 관찰되어 식생의 주기적인 모니터링과 지역 특성에 적합한 우점종 선정이 매우 중요한 것으로 판단된다.
Journal of the Korean Association of Geographic Information Studies
/
v.17
no.1
/
pp.80-90
/
2014
The objective of this research is to estimate the stand volume of Pinus koraiensis, by using the investigated volume and the information of remote sensing(RS), in the research forest of Kangwon National University. The average volume of the research forest per hectare was $307.7m^3/ha$ and standard deviation was $168.4m^3/ha$. Before and after carrying out 3 by 3 majority filtering on TM image, eleven indices were extracted each time. Independent variables needed for linear regression equation were selected using mean pixel values by indices. The number of indices were eleven: six Bands(except for thermal Band), NDVI, Band Ratio(BR1:Band4/Band3, BR2:Band5/Band4, BR3:Band7/Band4), Tasseled Cap-Greeness. As a result, NDVI and TC G were chosen as the most suitable indices for regression before and after filtering, and R-squared was high: 0.736 before filtering, 0.753 after filtering. As a result of error verification for an exact comparison, RMSE before and after filtering was about $69.1m^3/ha$, $67.5m^3/ha$, respectively, and bias was $-12.8m^3/ha$, $9.7m^3/ha$, respectively. Therefore, the regression conducted with filtering was selected as an appropriate model because of low RMSE and bias. The estimated stand volume applying the regression was $160,758m^3$, and the average volume was $314m^3/ha$. This estimation was 1.2 times higher than the actual stand volume of Pinus koraiensis.
Ahn, Myeonghui;Jang, Eun-kyung;Bae, Inhyeok;Ji, Un
KSCE Journal of Civil and Environmental Engineering Research
/
v.40
no.6
/
pp.571-581
/
2020
Vegetation affects water level change and flow resistance in rivers and impacts waterway ecosystems as a whole. Therefore, it is important to have accurate information about the species, shape, and size of any river vegetation. However, it is not easy to collect full vegetation data on-site, so recent studies have attempted to obtain large amounts of vegetation data using terrestrial laser scanning (TLS). Also, due to the complex shape of vegetation, it is not easy to obtain accurate information about the canopy area, and there are limitations due to a complex range of variables. Therefore, the physical structure of vegetation was analyzed in this study by reconfiguring high-resolution point cloud data collected through 3-dimensional terrestrial laser scanning (3D TLS) in a voxel. Each physical structure was analyzed under three different conditions: a simple vegetation formation without leaves, a complete formation with leaves, and a patch-scale vegetation formation. In the raw data, the outlier and unnecessary data were filtered and removed by Statistical Outlier Removal (SOR), resulting in 17%, 26%, and 25% of data being removed, respectively. Also, vegetation volume by voxel size was reconfigured from post-processed point clouds and compared with vegetation volume; the analysis showed that the margin of error was 8%, 25%, and 63% for each condition, respectively. The larger the size of the target sample, the larger the error. The vegetation surface looked visually similar when resizing the voxel; however, the volume of the entire vegetation was susceptible to error.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.210-210
/
2020
LID (Low Impact Development, 저영향개발)는 산업화 및 도시화 진행 지역에서 비점오염원으로부터 배출되는 오염물질을 제어해 개발지역 내 자연순화 기능을 최대한 유지하고, 물순환 기능증대를 통해 강우 유출수를 지역 내에서 관리하는 것을 목표로 한다. 비점오염원 저감 LID 시설에는 자연형과 장치형 시설이 있다. 자연형 시설에는 저류형, 침투, 식생형 시설 등이 있다. 특히, 침투시설에는 대표적으로 투수블럭이 있으며, 이는 투수성 포장재를 통해 강우 유출수를 지하로 침투시켜 여과나 흡착 등으로 비점오염물질을 제어하는 시설이다. 장치형 시설로는 여과재나 망을 이용해 비점오염물질을 분리하는 여과형 및 스크린형 시설, 응집과 침전을 통해 비점오염물질을 분리하는 응집·침전 시설 등이 있다. 이에 본 연구는 2016년부터 2018년 3년간 전주 서곡지구 지역 내 설치된 필터형 투수블럭, 틈새형 투수블럭에서 진행했다. 각각의 투수블럭에서 총 19회, 20회의 강우 모니터링을 실시했고, 오염물질 유입 및 유출 EMC 등의 분석을 통해 유출 및 오염물질 저감효과를 분석했다. 연구 대상 각 투수블럭의 주요 제원은 시설 용량 14.4㎥, 시설 면적은 14.4㎡이다. 모니터링 결과값을 분석한 결과 필터형 투수블럭의 경우 유출 저감율은 17.4 ~ 100%, 틈새형 투수블럭은 29.6 ~ 100%이었다. 필터형 투수블럭과 틈새형 투수블럭의 단위면적당 유량 저감량은 각각 0.014 ~ 0.583㎥/㎡, 0.035 ~ 0.588㎥/㎡이었다. 오염물질 저감효율을 분석한 결과 유기물 항목(BOD, TOC)의 경우 틈새형 투수블럭에서의 저감효율(BOD 93.59%, TOC 90.39%)이 필터형 투수블럭에서의 저감효율(BOD 89.99%, TOC 86.94%) 보다 다소 높게 나타났다. 영양염류 항목(T-N, T-P)의 경우 필터형, 틈새형 모두 비슷한 저감효율(필터형 T-N 89.02%, 필터형 T-P 98.12%, 틈새형 T-N 90.41%, 틈새형 T-P 98.04%)을 보였다.
본 연구에서는 KOMPSAT-3급 고해상도 위성영상을 이용하여 전처리 후 정밀 농업 주제정보를 추출하는 방법론을 제시하고자 하였다. 분석에 사용한 KOMPSAT-3급 고해상도 위성영상은 IKONOS (2001/5/25, 2001/12/25, 2003/10/23) 3개의 영상, QuickBird (2006/5/1, 2004/11/17) 2개의 영상, KOMPSAT-2 (2007/9/17) 1개의 영상 등 모두 6개의 영상을 확보 및 각각에 대한 현장 GCP자료 및 RPC, RPB 자료를 수집하여 정사보정을 실시하였다. RMSE는 약 $0.12\sim3.18$의 값으로 분포되었다. KOMPSAT근 급 영상자료로 부터 정밀농업물재배지도를 작성하기 위해 각 벤드별 Scatter기법을 이용하여 각 밴드간의 상간관계를 살펴보고, 3개의 최적의 밴드를 선정하였다. 또한 작물별 최적의 밴드 결정을 위해 각 밴드별 픽셀 값을 사용하여 Texture 분석을 실시하였다. 그 결과 논의 경우 모든 밴드에서 분석이 용이 한 것으로 분석되었으며, 4밴드의 경우 3개의 작물(고추, 옥수수, 벼)의 분석시 매우 적합한 밴드인 것으로 분석되었다. 각 영상별 필터링 기법과, ISODATA 방법을 이용한 정밀농업 토지이용도 작성하여 기존 스크린 디지타이징 기법으로 작성한 정밀토지이용도와 비교하였다. 다양한 식생정보를 추출하는 위하여 확보된 영상자료로부터 RVI, NDVI, ARVI, SAVI 식생지수 를 추출하였으며, 그 결과를 현장자료로부터 추출한 식생지수간의 결과 값과 비교분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.